[1]
Stefanidou M, Pachta V, Konopissi S, Karkadelidou F, Papayianni I. Analysis and characterization of hydraulic mortars. Mater Struct 2014;47–4:571–80
DOI: 10.1617/s11527-013-0080-y
Google Scholar
[2]
J.-I. Lee, S.-H. Bae, J.-H. Kim, S.-J. Choi, Effect of cementitious materials on the engineering properties of lightweight aggregate mortars containing recycled water, Materials 15 (5) (2022) 1967.
DOI: 10.3390/ma15051967
Google Scholar
[3]
Matias G, Faria P, Torres I. Natural hydraulic lime mortars: influence of the aggregates. In: Historic mortars conference HMC2013. Glasgow, Scotland: University of West Scotland; (2013)
DOI: 10.1007/978-3-319-91606-4_14
Google Scholar
[4]
Faria-Rodrigues P, Henriques F. Current mortars in conservation an overview. Restoration Build Monuments 2004;10:609–22.
Google Scholar
[5]
Moropoulou A, Bakolas A, Bisbikou K. Investigation of the technology of historic mortars. J Cultural Heritage 2000;1:45–58.
DOI: 10.1016/s1296-2074(99)00118-1
Google Scholar
[6]
Carran, D., Hughes, J., Leslie, A., & Kennedy, C. (2012). A Short History of the Use of Lime as a Building Material Beyond Europe and North America. International Journal of Architectural Heritage: Conservation, Analysis, and Restoration, 6(2), 117-146, (2012)
DOI: 10.1080/15583058.2010.511694
Google Scholar
[7]
Borsoi G, Santos Silva A, Menezes P, Candeias A. Chemical, mineralogical and microstructural characterization of historical mortars from the Roman villa of Pisões, Beja, Portugal. In: Historic mortars conference HMC2010. Prague: Czech Republic; 2010.
DOI: 10.1016/j.conbuildmat.2019.01.233
Google Scholar
[8]
Benedetti D, Valetti S, Bontempi E, Piccioli C, Depero LE. Study of ancient mortars from the Roman Villa of Pollio Felice in Sorrento (Naples). Appl Phys A Mater Sci Process 2004; 79: 341–5.
DOI: 10.1007/s00339-004-2529-x
Google Scholar
[9]
V. Flores-Alés, M. Rodríguez-Romero, I. Romero-Hermida, L. Esquivias, Caracterización de morteros mixtos de cal obtenida del reciclado de fosfoyeso, Bol. De. La Soc. Esp. De. Cerámica Y. Vidr. 59 (3) (2020) 129–136.
DOI: 10.1016/j.bsecv.2019.09.002
Google Scholar
[10]
Muhammad Nasir, Muhammad Arif Aziz, Mukarram Zubair, Noman Ashraf, Tag Nasreldin Hussein, Moath Khalid Allubli, Mohammad Saood Manzar, Walid Al-Kutti , Mamdouh A. Al-Harthi. Engineered cellulose nanocrystals-based cement mortar from office paper waste: Flow, strength, microstructure, and thermal properties. Journal of Building Engineering, 2022, 51, 104345
DOI: 10.1016/j.jobe.2022.104345
Google Scholar
[11]
Pochpagee Markpiban, Wittawat Krudam, Raktipong Sahamitmongkol. Investigation of flow, compressive strength, shrinkage, and tensile properties of mortar with internal curing bottom ash. Results in Materials, 2022, 15, 100296
DOI: 10.1016/j.rinma.2022.100296
Google Scholar
[12]
Caitlin J. Adams, Baishakhi Bose, Jan Olek, Kendra A. Erk. Evaluation of mix design strategies to optimize flow and strength of mortar internally cured with superabsorbent polymers. Construction and Building Materials, 2022, 324, 126664. https://doi.org/
DOI: 10.1016/j.conbuildmat.2022.126664
Google Scholar
[13]
C.M. Stolz, A.B. Masuero, Influence of grain distribution on the rheological behavior of mortars, Construct. Build. Mater. 177 (2018) 261–271, https://doi.org/ 10.1016/ j.conbuildmat.2018.05.131.
DOI: 10.1016/j.conbuildmat.2018.05.131
Google Scholar
[14]
H. Hafid, G. Ovarlez, F. Toussaint, P.H. Jezequel, N. Roussel, Effect of particle morphological parameters on sand grains packing properties and rheology of model mortars, Cement Concr. Res. 80 (2016) 44–51.
DOI: 10.1016/j.cemconres.2015.11.002
Google Scholar
[15]
Z. Ullah, M.I. Qureshi, A. Ahmad, S.U. Khan, M.F. Javaid, An experimental study on the mechanical and durability properties assessment of E-waste concrete, J. Build. Eng. 38 (2021).
DOI: 10.1016/j.jobe.2021.102177
Google Scholar
[16]
X. Gao, X. Yao, R. Xie, X. Li, J. Cheng, and T. Yang, "Performance of fly ash-based geopolymer mortars with waste cathode ray tubes glass fine aggregate: A comparative study with cement mortars," Constr. Build. Mater., vol. 344, p.128243, Aug. 2022.
DOI: 10.1016/j.conbuildmat.2022.128243
Google Scholar
[17]
NMX-C-414-ONNCCE-2014. (2014). Building Industry – Hydraulic Cements – Specifications and Testing Methods. EDIT BY INSTITUTO MEXICANO DEL CEMENTO Y CONCRETO, A.C (IMCYC).
Google Scholar
[18]
NMX-C-144-ONNCCE. (2015). Organismo Nacional de Normalización y Certificación de la construcción y Edificación, S.C. Industria de La Construcción-Cementantes Hidráulicos-Requisitos Para El Aparato Usado En La Determinación de La Fluidez de Morteros.
DOI: 10.3989/ic.1970.v22.i217.3611
Google Scholar
[19]
NMX-C-061-ONNCCE. (2015). Organismo Nacional de Normalización y Certificación de la construcción y Edificación, S.C. Industria de La Construcción-Cementantes Hidráulicos-Determinación de La Resistencia a La Compresión de Cementantes Hidraúlicos.
DOI: 10.4995/thesis/10251/67691
Google Scholar
[20]
NMX-C-514-ONNCCE. (2016). Organismo Nacional de Normalización y Certificación de la construcción y Edificación, S.C. Industria de La Construcción-Resistividad Eléctrica Del Concreto Hidráulico - Especificaciones y Métodos de Ensayo.
DOI: 10.3989/mc.1978.v28.i172.1128
Google Scholar