Mechanical, Thermal Properties of Virgin, Recycled and Mixed High-Density Polyethylene Matrices and Wood Plastic Composites with Plywood Sanding Dust

Article Preview

Abstract:

Virgin high-density polyethylene (vHDPE), recycled (rHDPE), and mixed vHDPE/rHDPE matrices and wood plastic composites based on these mixtures + 50 wt.% of plywood sanding dust (PSD) and 3 wt.% coupling agent maleated polyethylene (MAPE) physical-mechanical properties (tensile, flexural strength and modulus, impact strength, and microhardness) were investigated. It was observed that all defined properties depend on the content of rHDPE in the pure polymer matrix and corresponding WPCs. Tensile strength and modulus decreased a bit, but flexural modulus actually had no changes. At the same time, a decrease in impact strength and a significant increase (up to 2 times) in microhardness are observed. From all the investigated matrices, the most perspective seems to be the matrix with a vHDPE/rHDPE ratio of 75/25, whose mechanical properties are acceptable for the preparation of the WPCs based on plywood sanding dust. The compatibilization possibilities tests of different mixed matrices done by the DSC method in the air showed that the mixed vHDPE/rHDPE compositions compatibility is sufficiently good at different proportions. For all mixed matrices, only one relatively symmetric band with one peak of melting was observed. Differential scanning calorimetry (DSC) tests in an inert environment showed that during the first heating cycle, HDPE components are only partially compatible (two peaks of melting temperatures are possible to fix). On the contrary, after the cooling and crystallization processes, during the second heating of the same sample, these two bands completely merge, and like in the air, only one maximum melting temperature peak was observed. The values of thermal oxidation temperature and melting temperature are the highest for virgin vHDPE but the lowest for rHDPE. The values of all corresponding parameters of mixed matrices reduce proportionally with an increase in rHDPE content in the mixtures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

33-43

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Polyolefin composites, Ed. By Domasius Nwabunma and Thein Kun 3M Company,Wiley- Interfacescience, A. John Wiley and Sons INC Publications, 2007.

Google Scholar

[2] S. Chaudemache, A. Perrot, S. Pimbert, T. Lecompte, F. Fame, Properties of industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles, Constr. Build. Mater. 162 (2018) 543-552

DOI: 10.1016/j.conbuildmat.2017.12.061

Google Scholar

[3] J. Kajaks, A. Kolbins, K. Kalnins, Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene and plywood production waste, IOP Conf. Series: Materials Science and Eng. 111 (2016) 012003

DOI: 10.1088/1757-899X/111/1/012003

Google Scholar

[4] C. Fonseca-Valero, A. Ochoa-Mendoza, J. Avranz-Andres, C. Gonzalez-Sanchez, Mechanical recycling and composition effects on the properties and structure of hard wood cellulose reinforced high density polyethylene eco-composites, Composites: Part A. 69 (2015) 94-104

DOI: 10.1016/j.compositesa.2014.11.009

Google Scholar

[5] J. Kajaks, K. Kalnins, R. Naburgs, Wood plastic composites (WPCs) based on high density polyethylene and birch wood plywood production residues, Intern.Wood Products Journal. 9 (1) (2018) 15-21

DOI: 10.1080/20426445.2017.1410997

Google Scholar

[6] J. Kajaks, A. Zagorska, A. Mezinskis, Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene and timber industry waste, J. of Mater. Science. 21(3) (2015) 396-399

DOI: 10.5755/j01.ms.21.3.7283

Google Scholar

[7] H. Chen, T. Chen, C. Hsu, Effects of wood particle size and mixing ratios of HDPE on the properties of the cComposites, Holz als Roh-und Werkst. 64(3) (2006) 172-177

DOI: 10.1007/s00107-005-0072-x

Google Scholar

[8] H. Jaya, M. Omar, H. Md Akil, Z. Arifin Ahmad, N. Zulkeplin, Effect of Particle size on mechanical properties of sawdust-high density polyethylene composites under various strain rates, BioResources. 11(3) (2016) 6489-6504. https://doi.org:

DOI: 10.15376/biores.11.3.6489-6504

Google Scholar

[9] E. Nadali, M. Layeghin, G. Ebrahimi, R. Naghdi, M. Jonoobi, M. Mehdi Khorasani, Y. Mirbagheri, Effects of multiple extrusions on structure-property performance of natural fiber high-density polyethylene biocomposites, Mater. Res. 21(2) (2018) 101-110

DOI: 10.1590/1980-5373-MR-2017-0301

Google Scholar

[10] H. Kuan, J. Huang, C. Ma, F. Wang, Processability, morphology and mechanical properties of wood flour reinforced high density polyethylene composites, Plast. Rubber Compos. 32(3) (2003) 122-126

DOI: 10.1179/146580103225001363

Google Scholar

[11] W. Brostow, T. Datashvili, P. Jiang, H. Miller, Recycled HDPE reinforced with sol-gel silica modified wood sawdust, Europ. Polym. Journal. 76 (2016) 28-39. https://dx.doi.org/10.1016/j.eurpolymj.2016.01.0150014-3057/Ó (2016)

DOI: 10.1016/j.eurpolymj.2016.01.015

Google Scholar

[12] S. Ghani, M. Pisal, F. Zainuddin, H. Ismail, The effect of chemical modification of wood properties of recycled high density polyethylene/wood fibres composites, J. of Phys. Sci. 27(1) (2016) 1-14.

Google Scholar

[13] J. Kajaks, K. Kalnins, A. Zagorska, J. Matvejs, Some exploitation properties of wood plastic composites based on recycled high density polyethylene (rHDPE) and plywood production residues, Solid State Phenome. 267 (2017) 76-81

DOI: 10.4028/www.scientific.net/SSP.267.76

Google Scholar

[14] A. Turku, T. Keskisaari, A. Karki, A. Puurtinen, P. Martttile, Characterization of wood plastic composites manufactured from recycled plastics blends, Compos. Structure. 161 (2017) 469-476

DOI: 10.1016/j.compstruct.2016.11.073

Google Scholar

[15] A. Ashori, A. Nourbakhsh, Characteristics of wood-fiber plastic composites made of recycled materials, Waste Manag. 29(4) (2009) 1291-1295

DOI: 10.1016/j.wasman.2008.09.012

Google Scholar

[16] A. Nourbakhsh, A. Ashori, Preparation and properties of wood plastic composites made of recycled high-density polyethylene, J. Compos. Mater. 43(8) (2009) 877-883

DOI: 10.1177/0021998309103089

Google Scholar

[17] I. Ignatyev, W. Thieleman, B. Vander Beke, Recycling of polymers: A review, ChemSusChem. 7(6) (2014) 1579-1593

DOI: 10.1002/cssc.201300898

Google Scholar

[18] S. Karlson, Recycled Polyolefins. Material Properties and Means for Quality Determination, Adv. Polym. Sci. 169 (2004) 201-229

DOI: 10.1007/b94173

Google Scholar

[19] R. Mnif, R. Elleuch, Effects of reprocessing cycles and ageing on the rheological and mechanical properties of virgin-recycled HDPE blends, Mater. Tech. 103(7) (2015) 85-90

DOI: 10.1051/MATTECH/2015056

Google Scholar

[20] P. Oblak, J. Gonzalez-Gutierrez, B. Zupančič, A. Aulova, I. Emri, Processability and mechanical properties of extensively recycled high density polyethylene, Polym. Degrad. Stab. 114 (2015) 133-145

DOI: 10.1016/j.polymdegradstab.2015.01.012

Google Scholar

[21] C. Mählmann, I. Kipper, A. De Lawisch, D. López, Study and characterization of virgin and recycled PE/PP blends. REWAS'04 – Glob. Symp. Recycl. Waste Treat. Clean Technol. 38 (2005) 1769-1777.

Google Scholar

[22] K. Adhikary, S. Pang, P. Staiger, Dimensional stability and mechanical behavior of wood plastic composites based on recycled and virgin high density polyethylenes, Composites: Part B. 39 (2008) 807-815

DOI: 10.1016/j.compositesb.2007.10.005

Google Scholar

[23] J. Kajaks, K. Kalnins., M. Zalitis, J. Matvejs, Some exploitation properties of wood plastics composites based on mixtures of virgin and recycled high density polyethylenes and birch plywood sanding dust, Solid State Phenom. 320 (2021) 119-125

DOI: 10.4028/www.scientific.net/SSP.320.119

Google Scholar

[24] A. Van Belle, R. Demets, N. Mys, K. Van Kets, J. Dewulf, K. Van Geen, S. De Meester, K. Ragaert, Microstructural contributions of different polyolefins to the deformation mechanisms of their binary blends, Polymers. 12(5) (2020) 1171

DOI: 10.3390/polym12051171

Google Scholar

[25] H. Gao, Y. Xie, R. Ou, Q. Wang, Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood-plastic composites, Compos. Part A: Appl. Sci. Manuf. 43(1) (2012) 150-157

DOI: 10.1016/j.compositesa.2011.10.001

Google Scholar

[26] M. Fatima Ezzahrae, A. Nacer, E. Latifa, I. Mohamed, Z. Abdellash, J. Mustapha, Thermal and mechanical properties of a high density polyethylene (HDPE) reinforced with wood flour, Mater. To-day Proceedings. 72 (2023) 3602-3608

DOI: 10.1016/j.matpr.2022.08.394

Google Scholar

[27] A. Koffi, F. Mijiyawa, D. Koffi, F. Erchiqui, L. Toubal, Mechanical properties, wettability and thermal degradation of HDPE/ with birch fiber composites, Polymers. 13(9) (2021) 1459

DOI: 10.3390/polym13091459

Google Scholar

[28] A. Fazli, T. Stevanovic, D. Rodrique, Recycled HDPE/natural fibre composites modified with waste tire rubber: A comparison between injection and compression moulding, Polymers. 14(5) (2022) 3197

DOI: 10.3390/polym14153197

Google Scholar

[29] Y.F. Shin, W. L. Tsai, S. Hamdiani, An environmentally friendly recycled polyethylene composites reinforced with diatomaceous earth wood fiber, Key Eng. Mater. 889 (2021) 15-26

DOI: 10.4028/www.scientific.net/KEM.889.15

Google Scholar