Characterization of Waste Micro and Nano Tungsten Carbide Powder Reinforced Polyamide 66 Matrix Composites

Article Preview

Abstract:

Polyamide 66 (PA 66) or Nylon 66 is a strong, easily processed polymer with high thermal resistance and excellent mechanical properties. Tungsten carbide (WC/Co-Cr 86/10-4), known for its exceptional hardness and elasticity, is commonly used for coatings in the thermal spraying and coating industry. In this study, we examined the microstructural, mechanical, and thermal properties of composites made from waste micro and nano WC/Co-Cr 86/10-4 powder and a PA66 matrix. PA66 was reinforced with varying ratios of 3, 6, and 10 wt.% WC/Co-Cr 86/10-4. The composite specimens were created by mechanically mixing granular PA66 and micro and nano WC/Co-Cr 86/10-4 powders and molding them under controlled temperature. Mechanical properties were evaluated through ductility and hardness tests, while thermal properties were determined through DSC analysis. The SEM observation revealed the distribution of WC/Co-Cr 86/10-4 within the polymer matrix. The DSC analysis indicated that the composite had a slightly higher melting temperature than pure PA66, and the thermal conductivity also increased slightly. The experimental results demonstrated that the mechanical properties of the composite improved as the WC/Co-Cr 86/10-4 content increased, specifically in terms of tensile strength and hardness. Additionally, the composite exhibited enhanced interfacial adhesion, mechanical behavior, and thermal properties. This composite, utilizing WC/Co-Cr 86/10-4 waste and recycled PA66, allows for the repurposing of industrial waste.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

45-51

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhang, W. Fan, T. Liu, Fused deposition modeling 3D printing of polyamide-based composites and its applications, Compos. Commun. 21 (2020) 100413

DOI: 10.1016/j.coco.2020.100413

Google Scholar

[2] L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements, J. Chem. Eng. 400 (2020) 125928

DOI: 10.1016/j.cej.2020.125928

Google Scholar

[3] V. Volpe, S. Lanzillo, G. Affinita, B. Villacci, I. Macchiarolo, R. Pantani, Lightweight high-performance polymer composite for automotive applications, Polymers. 11 (2019) 326

DOI: 10.3390/polym11020326

Google Scholar

[4] B. Krause, R. Boldt, L. Häußler, P. Pötschke, Ultralow percolation threshold in polyamide 6.6/MWCNT composites, Compos. Sci. Technol. 114 (2015) 119-125

DOI: 10.1016/j.compscitech.2015.03.014

Google Scholar

[5] C. Xiao, L. Chen, Y. Tang, X. Zhang, K. Zheng, X. Tian, Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity, Compos. - A: Appl. Sci. 124 (2019) 105511

DOI: 10.1016/j.compositesa.2019.105511

Google Scholar

[6] Y. Yang, S. Zhang, X. Zhao, J. Yu, B. Ding, Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration, Sep. Purif. Technol. 152 (2015) 14-22

DOI: 10.1016/j.seppur.2015.08.005

Google Scholar

[7] I. Gocek, R. Keskin, G. Ozkoc, Effect of fiber content on failure modes of glass fiber reinforced injection molded polyamide 66 composites, Adv. Mat. Res. 1119 (2015) 296-300

DOI: 10.4028/www.scientific.net/amr.1119.296

Google Scholar

[8] V. Uğraşkan, A. Toraman, A.B.H. Yoruç, Natural fiber reinforced synthetic polymer composites, DFMA. 23 (2019) 6-30

DOI: 10.4028/www.scientific.net/df.23.6

Google Scholar

[9] C. Xiao, X. Leng, X. Zhang, K. Zheng, X. Tian, Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites, Compos. - A: Appl. Sci. 110 (2018) 133-141

DOI: 10.1016/j.compositesa.2018.03.030

Google Scholar

[10] M.J. Vaidya, I.M. Raycha, D.P. Trivedi, J.P. Shah, K.S. Randhawa, Tribo-mechanical characterisation of MoS2 and H-BN reinforced PA66 composite, Aust. J. Mech. Eng. (2022) 1-10

DOI: 10.1080/14484846.2022.2073019

Google Scholar

[11] D.W. Gebretsadik, J. Hardell, B. Prakash, Friction and wear characteristics of PA 66 polymer composite/316L stainless steel tribopair in aqueous solution with different salt levels, Tribol. Int. 141 (2020) 105917

DOI: 10.1016/j.triboint.2019.105917

Google Scholar

[12] B. Krause, L. Kroschwald, P. Pötschke, The influence of the blend ratio in pa6/pa66/mwcnt blend composites on the electrical and thermal properties, Polymers. 11 (2019) 122.

DOI: 10.3390/polym11010122

Google Scholar

[13] B.M. Rudresh, B.N. Ravi Kumar, D. Madhu, Combined effect of micro- and nano-fillers on mechanical, thermal, and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites, Adv. Compos. 2(1) (2019) 176-188

DOI: 10.1007/s42114-019-00089-5

Google Scholar

[14] T. Liu, J. Li, X. Wang, Z. Deng, X. Yu, A. Lu, F. Yu, J. He, Preparation and properties of thermal conductive polyamide 66 composites, J. Thermoplast. Compos. Mater. 28(1) (2013) 32-45.

DOI: 10.1177/0892705712475016

Google Scholar

[15] Q. Chen, G. Chatzigeorgiou, G. Robert, F. Meraghni, Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation, Mech. Mater. 164 (2022) 104081

DOI: 10.1016/j.mechmat.2021.104081

Google Scholar

[16] T. Kunishima, Y. Nagai, G. Bouvard, J. Abry, V. Fridrici, P. Kapsa, Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication, Wear. 477 (2021) 203899

DOI: 10.1016/j.wear.2021.203899

Google Scholar

[17] D. Frihi, A. Layachi, S. Gherib, G. Stoclet, K. Masenelli-Varlot, H. Satha, R. Seguela, Crystallization of glass-fiber-reinforced polyamide 66 composites: Influence of glass-fiber content and cooling rate, Compos. Sci. Technol. 130 (2016) 70-77

DOI: 10.1016/j.compscitech.2016.05.007

Google Scholar

[18] G. Colucci, O. Ostrovskaya, A. Frache, B. Martorana, C. Badini, The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers, J. Appl. Polym. Sci. 132(29) (2015) 42275

DOI: 10.1002/app.42275

Google Scholar

[19] J. Chen, H. Xu, C. Liu, L. Mi, C. Shen, The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites, Compos. Sci. Technol.. 168 (2018) 20-27

DOI: 10.1016/j.compscitech.2018.09.007

Google Scholar

[20] F. Chegdani, B. Takabi, M. El Mansori, B.L. Tai, S.T.S. Bukkapatnam, Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites, J. Manuf. Process. 54 (2020) 337-346

DOI: 10.1016/j.jmapro.2020.03.025

Google Scholar

[21] M. Mejri, L. Toubal, J.C. Cuillière, V. François, Fatigue life and residual strength of a short- natural-fiber-reinforced plastic vs Nylon, Compos. B: Eng. 110 (2017) 429-441

DOI: 10.1016/j.compositesb.2016.11.036

Google Scholar

[22] A.K. Singh, R. Bedi, B.S. Kaith, Mechanical properties of composite materials based on waste plastic – A review, Mater. Today: Proc. 26 (2020) 1293-1301.

DOI: 10.1016/j.matpr.2020.02.258

Google Scholar

[23] H. Myalska, K. Szymański, G. Moskal, Microstructure and selected properties of WC-Co-Cr coatings deposited by high velocity thermal spray processes, Solid State Phenom. 246 (2016) 117-122.

DOI: 10.4028/www.scientific.net/ssp.246.117

Google Scholar

[24] R. Schwetzke, H. Kreye, Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems, J. Therm. Spray Technol. 8(3) (1999) 433-439.

DOI: 10.1361/105996399770350395

Google Scholar

[25] A. Wank, B. Wielage, H. Pokhmurska, E. Friesen, G. Reisel, Comparison of hardmetal and hard chromium coatings under different tribological conditions, Surf. Coat. 201(5) (2006) 1975-1980.

DOI: 10.1016/j.surfcoat.2006.04.058

Google Scholar

[26] E.C. Sarac, L.H. Poudeh, I. Berktas, B.S. Okan, Scalable fabrication of high-performance graphene/polyamide 66 nanocomposites with controllable surface chemistry by melt compounding, J. Appl. Polym. Sci. 138(10) (2021) 49972.

DOI: 10.1002/app.49972

Google Scholar

[27] H.M. Hsiung, H.J. Ren, W.P. Ning, K.S. Chi, Study on tensile properties of nylon 66 reinforced composites, In Proceedings of the 2016 International Conference on Education, Management, Computer and Society. Atlantis Press, 2016.

DOI: 10.2991/emcs-16.2016.415

Google Scholar

[28] M. Mohamadi, S. Alavitabari, M. Aliasghary, Prediction of mechanical and thermal properties in bronze-filled polyamide 66 composites using artificial neural network, Polym. Bull. 79(7) (2022) 4905-4921.

DOI: 10.1007/s00289-021-03751-5

Google Scholar