[1]
X. Zhang, W. Fan, T. Liu, Fused deposition modeling 3D printing of polyamide-based composites and its applications, Compos. Commun. 21 (2020) 100413
DOI: 10.1016/j.coco.2020.100413
Google Scholar
[2]
L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements, J. Chem. Eng. 400 (2020) 125928
DOI: 10.1016/j.cej.2020.125928
Google Scholar
[3]
V. Volpe, S. Lanzillo, G. Affinita, B. Villacci, I. Macchiarolo, R. Pantani, Lightweight high-performance polymer composite for automotive applications, Polymers. 11 (2019) 326
DOI: 10.3390/polym11020326
Google Scholar
[4]
B. Krause, R. Boldt, L. Häußler, P. Pötschke, Ultralow percolation threshold in polyamide 6.6/MWCNT composites, Compos. Sci. Technol. 114 (2015) 119-125
DOI: 10.1016/j.compscitech.2015.03.014
Google Scholar
[5]
C. Xiao, L. Chen, Y. Tang, X. Zhang, K. Zheng, X. Tian, Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity, Compos. - A: Appl. Sci. 124 (2019) 105511
DOI: 10.1016/j.compositesa.2019.105511
Google Scholar
[6]
Y. Yang, S. Zhang, X. Zhao, J. Yu, B. Ding, Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration, Sep. Purif. Technol. 152 (2015) 14-22
DOI: 10.1016/j.seppur.2015.08.005
Google Scholar
[7]
I. Gocek, R. Keskin, G. Ozkoc, Effect of fiber content on failure modes of glass fiber reinforced injection molded polyamide 66 composites, Adv. Mat. Res. 1119 (2015) 296-300
DOI: 10.4028/www.scientific.net/amr.1119.296
Google Scholar
[8]
V. Uğraşkan, A. Toraman, A.B.H. Yoruç, Natural fiber reinforced synthetic polymer composites, DFMA. 23 (2019) 6-30
DOI: 10.4028/www.scientific.net/df.23.6
Google Scholar
[9]
C. Xiao, X. Leng, X. Zhang, K. Zheng, X. Tian, Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites, Compos. - A: Appl. Sci. 110 (2018) 133-141
DOI: 10.1016/j.compositesa.2018.03.030
Google Scholar
[10]
M.J. Vaidya, I.M. Raycha, D.P. Trivedi, J.P. Shah, K.S. Randhawa, Tribo-mechanical characterisation of MoS2 and H-BN reinforced PA66 composite, Aust. J. Mech. Eng. (2022) 1-10
DOI: 10.1080/14484846.2022.2073019
Google Scholar
[11]
D.W. Gebretsadik, J. Hardell, B. Prakash, Friction and wear characteristics of PA 66 polymer composite/316L stainless steel tribopair in aqueous solution with different salt levels, Tribol. Int. 141 (2020) 105917
DOI: 10.1016/j.triboint.2019.105917
Google Scholar
[12]
B. Krause, L. Kroschwald, P. Pötschke, The influence of the blend ratio in pa6/pa66/mwcnt blend composites on the electrical and thermal properties, Polymers. 11 (2019) 122.
DOI: 10.3390/polym11010122
Google Scholar
[13]
B.M. Rudresh, B.N. Ravi Kumar, D. Madhu, Combined effect of micro- and nano-fillers on mechanical, thermal, and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites, Adv. Compos. 2(1) (2019) 176-188
DOI: 10.1007/s42114-019-00089-5
Google Scholar
[14]
T. Liu, J. Li, X. Wang, Z. Deng, X. Yu, A. Lu, F. Yu, J. He, Preparation and properties of thermal conductive polyamide 66 composites, J. Thermoplast. Compos. Mater. 28(1) (2013) 32-45.
DOI: 10.1177/0892705712475016
Google Scholar
[15]
Q. Chen, G. Chatzigeorgiou, G. Robert, F. Meraghni, Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation, Mech. Mater. 164 (2022) 104081
DOI: 10.1016/j.mechmat.2021.104081
Google Scholar
[16]
T. Kunishima, Y. Nagai, G. Bouvard, J. Abry, V. Fridrici, P. Kapsa, Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication, Wear. 477 (2021) 203899
DOI: 10.1016/j.wear.2021.203899
Google Scholar
[17]
D. Frihi, A. Layachi, S. Gherib, G. Stoclet, K. Masenelli-Varlot, H. Satha, R. Seguela, Crystallization of glass-fiber-reinforced polyamide 66 composites: Influence of glass-fiber content and cooling rate, Compos. Sci. Technol. 130 (2016) 70-77
DOI: 10.1016/j.compscitech.2016.05.007
Google Scholar
[18]
G. Colucci, O. Ostrovskaya, A. Frache, B. Martorana, C. Badini, The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers, J. Appl. Polym. Sci. 132(29) (2015) 42275
DOI: 10.1002/app.42275
Google Scholar
[19]
J. Chen, H. Xu, C. Liu, L. Mi, C. Shen, The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites, Compos. Sci. Technol.. 168 (2018) 20-27
DOI: 10.1016/j.compscitech.2018.09.007
Google Scholar
[20]
F. Chegdani, B. Takabi, M. El Mansori, B.L. Tai, S.T.S. Bukkapatnam, Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites, J. Manuf. Process. 54 (2020) 337-346
DOI: 10.1016/j.jmapro.2020.03.025
Google Scholar
[21]
M. Mejri, L. Toubal, J.C. Cuillière, V. François, Fatigue life and residual strength of a short- natural-fiber-reinforced plastic vs Nylon, Compos. B: Eng. 110 (2017) 429-441
DOI: 10.1016/j.compositesb.2016.11.036
Google Scholar
[22]
A.K. Singh, R. Bedi, B.S. Kaith, Mechanical properties of composite materials based on waste plastic – A review, Mater. Today: Proc. 26 (2020) 1293-1301.
DOI: 10.1016/j.matpr.2020.02.258
Google Scholar
[23]
H. Myalska, K. Szymański, G. Moskal, Microstructure and selected properties of WC-Co-Cr coatings deposited by high velocity thermal spray processes, Solid State Phenom. 246 (2016) 117-122.
DOI: 10.4028/www.scientific.net/ssp.246.117
Google Scholar
[24]
R. Schwetzke, H. Kreye, Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems, J. Therm. Spray Technol. 8(3) (1999) 433-439.
DOI: 10.1361/105996399770350395
Google Scholar
[25]
A. Wank, B. Wielage, H. Pokhmurska, E. Friesen, G. Reisel, Comparison of hardmetal and hard chromium coatings under different tribological conditions, Surf. Coat. 201(5) (2006) 1975-1980.
DOI: 10.1016/j.surfcoat.2006.04.058
Google Scholar
[26]
E.C. Sarac, L.H. Poudeh, I. Berktas, B.S. Okan, Scalable fabrication of high-performance graphene/polyamide 66 nanocomposites with controllable surface chemistry by melt compounding, J. Appl. Polym. Sci. 138(10) (2021) 49972.
DOI: 10.1002/app.49972
Google Scholar
[27]
H.M. Hsiung, H.J. Ren, W.P. Ning, K.S. Chi, Study on tensile properties of nylon 66 reinforced composites, In Proceedings of the 2016 International Conference on Education, Management, Computer and Society. Atlantis Press, 2016.
DOI: 10.2991/emcs-16.2016.415
Google Scholar
[28]
M. Mohamadi, S. Alavitabari, M. Aliasghary, Prediction of mechanical and thermal properties in bronze-filled polyamide 66 composites using artificial neural network, Polym. Bull. 79(7) (2022) 4905-4921.
DOI: 10.1007/s00289-021-03751-5
Google Scholar