Failure of Porcelain Coating on Milled and SLM Fabricated Titanium Alloy with Different Surface Treatment

Article Preview

Abstract:

The present paper aimed at investigating the influence of surface treatment on the failure of porcelain coating on Ti6Al4V alloy fabricated by milling and selective laser melting (SLM). The titanium alloy surface was treated by three different ways: sandblasting, application of a layer of bonding agent and combined (sandblasting and subsequent bond layer). A coating of ultra-low fusing ceramic was fabricated on one surface of the samples. The adhesion of the porcelain to the titanium alloy was investigated by standard 3-point bending test and the failure of the coating was evaluated by optical microscopy. It was found that the type of surface treatment of the titanium alloy affects the failure mechanism of porcelain coating on its surface. In case of all samples, the fracture of the ceramics was observed to occur by a mixed adhesion-cohesion mechanism with a difference in the layer of adhesive or cohesive failures. These differences are greater for the milled alloy compared to its SLM-treated counterpart. In the milled sample, adhesive failure occurs along the metal/oxide layer interface and cohesion through the oxide layer. After sandblasting, both adhesion and cohesion fractures were observed between the oxide layer and the porcelain. In the bond-treated samples, adhesive and cohesive failures were found to occur mainly between the oxide layer and the bond. Most of the specimens treated in a combined way failed cohesively by cracking the ceramic coating. In the control and sandblasted subgroups of the SLM-processed alloy, the porcelain coating was destroyed through adhesive-cohesive route: adhesive along the metal/oxide layer interface, and cohesive through the porcelain. Ceramic fracture in the bond- and combined treated subgroups was observed to occur adhesively along the bond/porcelain interface, and cohesively through the bond and porcelain.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

61-75

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ispas, L. Iosif, D. Popa, M. Negucioiu, M. Constantiniuc, C. Bacali, S. Buduru, Comparative assessment of the functional parameters for metal-ceramic and all-ceramic teeth restorations in prosthetic dentistry – A literature review. Biology. 11(4) (2022) 556

DOI: 10.3390/biology11040556

Google Scholar

[2] H. Hesse, M. Özcan, A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis. J. Adhes. Sci. Technol. 35 (2021) 2529-2546

DOI: 10.1080/01694243.2021.1899699

Google Scholar

[3] J. Souza, B. Henriques, E. Ariza, A.E. Martinelli, R.M. Nascimento, F.S. Silva, L.A. Rocha, J.P. Celis, Mechanical and chemical analyses across dental porcelain fused to CP Ttitanium or Ti6Al4V. Mater. Sci. Engin. C. 37 (2014) 76-83

DOI: 10.1016/j.msec.2013.12.030

Google Scholar

[4] J. Hong, S. Kim, S. Heo, J.Y. Koak, Mechanical properties and metal-ceramic bond strength of Co-Cr alloy manufactured by selective laser melting. Materials. 13 (2020) 5745

DOI: 10.3390/ma13245745

Google Scholar

[5] K. Dimitriadis, T. Papadopoulos, S. Agathopoulos, Effect of bonding agent on metal-ceramic bond strength between Co-Cr fabricated with selective laser melting and dental feldspathic porcelain. J. Prosthodont. 28(9) (2019) 1029-1036

DOI: 10.1111/jopr.13058

Google Scholar

[6] M. Sarraf, E. Ghomi, S. Alipour, S. Ramakrishna, N. Liana Sukiman, A state‑of‑the‑art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Des. Manuf. 5 (2022) 371-395

DOI: 10.1007/s42242-021-00170-3

Google Scholar

[7] H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai, T. Yoneyama, Application of titanium and titanium alloys to fixed dental prostheses. J. Prosthodontic Res. 63 (2019) 266-270

DOI: 10.1016/j.jpor.2019.04.011

Google Scholar

[8] M. Antanasova, A. Kocjan, J. Kovač, B. Žužek, P. Jevnikar, Influence of thermo-mechanical cycling on porcelain bonding to cobalt–chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J. Prosthodontic Res. 62(2) (2018) 184-194

DOI: 10.1016/j.jpor.2017.08.007

Google Scholar

[9] Z.A. Çevik, K. Özsoy, A. Ercetin, The effect of machining processes on the physical and surface morphology of Ti6Al4V specimens produced through powder bed fusion additive manufacturing. Int. J. 3D Printing Technol. Digital Ind. 5(2) (2021) 187-94

DOI: 10.46519/ij3dptdi.947650

Google Scholar

[10] T.D. Dikova, D.A. Dzhendov, Y.V. Gagov, Surface morphology and roughness of Ti6Al4V alloy manufactured by milling and selective laser melting (in Bulgarian). Proceedings of INNOVATIONS 2022, Varna, Bulgaria, 20-23 June 2022; Publisher STUME, Sofia, Bulgaria, 1(6) (2022) 48-55.

DOI: 10.1016/j.prostr.2022.12.193

Google Scholar

[11] M. Antanasova, A. Kocjan, M. Hocevar, P. Jevnikar, Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J. Prosthetic Dent. 123 (2020) 491-499

DOI: 10.1016/j.prosdent.2019.02.011

Google Scholar

[12] İ. Tepe, R. Nigiz, Z. Polat, S.M. Ünal, The effect of ytterbium-doped fiber laser on titanium fused to ceramic. Int. Dent. Res. 11(1) (2021) 128-136

Google Scholar

[13] M. Lubas, J. Jasinski, P. Jelen, M. Sitarz, Effect of ZrO2 sol-gel coating on the Ti 99.2 – porcelain bond strength investigated with mechanical testing and Raman spectroscopy. J. Molecular Struct. 1168 (2018) 316-321

DOI: 10.1016/j.molstruc.2018.04.086

Google Scholar

[14] M. Lubas, J. Jasinski, A. Zawada, I. Przerada, Influence of sandblasting and chemical etching on titanium 99.2–dental porcelain bond strength. Materials. 15 (2022) 116

DOI: 10.3390/ma15010116

Google Scholar

[15] K. Anusavice, C. Shen, H. Rawls, Phillips' science of dental materials. 12 ed., Elsevier Inc. 2013.

Google Scholar

[16] M. Yan, C.T. Kao, J.S. Ye, T.H. Huang, S.J. Ding, Effect of preoxidation of titanium on the titanium–ceramic bonding. Surf. Coat. Technol. 202(2) (2007) 288-293

DOI: 10.1016/j.surfcoat.2007.05.056

Google Scholar

[17] M. Antanasova, A. Kocjan, A. Abram, J. Kovač, P. Jevnikar, Pre-oxidation of selective-laser-melted titanium dental alloy: effects on surface characteristics and porcelain bonding. J. Adhes. Sci. Technol. 35(19) (2021) 2094-2109

DOI: 10.1080/01694243.2021.1877003

Google Scholar

[18] T.D. Papadopoulos, K.D. Spyropoulos, The effect of a ceramic coating on the cpTi–porcelain bond strength. Dent. Mater. 25(2) (2009) 247-253

DOI: 10.1016/j.dental.2008.06.008

Google Scholar

[19] I. Al Hussaini, K.A. Al Wazzan, Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium. J. Prosthetic Dent. 94(4) (2005) 350-356

DOI: 10.1016/j.prosdent.2005.07.007

Google Scholar

[20] N. Suansuwan, M.V. Swain, Adhesion of porcelain to titanium and a titanium alloy. J. Dentist. 31(7) (2003) 509-518

DOI: 10.1016/S0300-5712(03)00071-X

Google Scholar

[21] Scheftner Dental Alloys, Ti Milling Discs, Starbond Ti5 Disc. Information on https://scheftner.dental/starbond-ti5-disc-en.html

Google Scholar

[22] Carpenter Additive, PowderRange Ti64, Datasheet, 2020 CRS Holdings Inc., 7p. Information on https://www.carpenteradditive.com/resources

Google Scholar

[23] Carpenter Additive, CT PowderRange Ti64 F, Technical data sheet, 2019 CRS Holdings, Inc., 4 p. Information on www.carpenteradditive.com

Google Scholar

[24] Vita, VITA LUMEX AC, Instruction for use/Full version, VITA Zahnfabrik H. Rauter GmbH & Co.KG, Bad Sackingen, Germany, 54 p. Information on https://www.vita-zahnfabrik.com/en/VITA-LUMEX-AC-87902,27568.html

DOI: 10.1055/s-2005-864066

Google Scholar

[25] Vita, VITA NP BOND Paste, Instructions for use, VITA Zahnfabrik H. Rauter GmbH & Co.KG, Bad Sackingen, Germany. Information on https://www.vita-zahnfabrik.com/en/VITA-NP-BOND-24580,27568.html

DOI: 10.1055/s-2005-864066

Google Scholar

[26] T. Dikova, A. Anchev, V. Dunchev, D. Dzhendov, Y. Gagov, Experimental investigation of adhesion strength of dental ceramic to Ti6Al4V alloy fabricated by milling and selective laser melting. Procedia Struct. Integr. 42 (2022) 1520-1528

DOI: 10.1016/j.prostr.2022.12.193

Google Scholar

[27] W.J. O'brien, Dental materials and their selection. Quintessence, Chicago, Berlin, Tokyo, 2002.

Google Scholar

[28] X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes. Materials. 11(10) (2018) 1801

DOI: 10.3390/ma11101801

Google Scholar

[29] K. Dimitriadis, K. Spyropoulos, T. Papadopoulos, Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique. J. Adv. Prosthodontics. 10(1) (2018) 25-31

DOI: 10.4047/jap.2018.10.1.25

Google Scholar

[30] S. Zinelis, X. Barmpagadaki, V. Vergos, M. Chakmakchi, G. Eliades, Bond strength and interfacial characterization of 8 low fusing porcelains to cp Ti. Dent. Mater. 26(3) (2010) 264-273

DOI: 10.1016/j.dental.2009.11.004

Google Scholar