[1]
N. Cuando-Espitia, J. Bernal-Martínez, M. Torres-Cisneros, D. May-Arrioja, Laser-induced deposition of carbon nanotubes in fiber optic tips of MMI devices, Sens. 19(20) (2019) 1-15
DOI: 10.3390/S19204512
Google Scholar
[2]
L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo, Y. Zhang, Y. Zhan, D. Li, Z. Che, W. Zhu, H. Zheng, J. Tang, J. Zhang, Y. Zhong, Y. Luo, J. Yu, Z. Chen, A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity, Nanoscale. 12(26) (2020) 14188-14193
DOI: 10.1039/D0NR00139B
Google Scholar
[3]
A.L. Khalaf, T.S. Hasan, H.A. Abdulbari, W.A. Kadhim, M.H. Yaacob, CNT-based tapered optical fiber for ethanol remote sensing over 3-km optical fiber, J. Mater. Res. Technol. 12 (2021) 1738-1746
DOI: 10.1016/J.JMRT.2021.03.103
Google Scholar
[4]
A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10(3) (1972) 233-248
DOI: 10.1016/0020-7225(72)90039-0
Google Scholar
[5]
E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95(1-4) (1999) 299-314
Google Scholar
[6]
B. Akgöz, Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci. 8(9) (2011) 1821-1827
DOI: 10.1166/JCTN.2011.1888
Google Scholar
[7]
J.C. Hamilton, W.G. Wolfer, Theories of surface elasticity for nanoscale objects, Surf. Sci. 603(9) 1284-291
DOI: 10.1016/J.SUSC.2009.03.017
Google Scholar
[8]
Z. Yao, C.C. Zhu, M. Cheng, J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation, Comput. Mater. Sci. 22(3-4) 180-184. http://doi.org
DOI: 10.1016/S0927-0256(01)00187-2
Google Scholar
[9]
V.N. Popov, Lattice dynamics of single-walled boron nitride nanotubes, Phys. Rev. B. 67(8) (2003) 085408
DOI: 10.1103/PhysRevB.67.085408
Google Scholar
[10]
M. Arda, M. Aydogdu, Torsional wave propagation of CNTs via different nonlocal gradient theories, in ICSV 2016: 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, 2016.
Google Scholar
[11]
M. Arda, Torsional wave propagation in carbon nanotube bundles, Noise Theory Pract. 5(3) (2019) 7-20.
Google Scholar
[12]
A. Fatahi-Vajari, A. Imam, Torsional vibration of single-walled carbon nanotubes using doublet mechanics, Z. Angew. Math. Phys. 67(4) (2016) 1-22
DOI: 10.1007/S00033-016-0675-6
Google Scholar
[13]
A. Fatahi-Vajari, Z. Azimzadeh, M. Hussain, Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method, Micro Nano Lett. 14(14) (2019) 1366-1371
DOI: 10.1049/MNL.2019.0203
Google Scholar
[14]
B. Uzun, M.Ö. Yaylı, Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory, Mater. Today Commun. 32 (2022) 103969
DOI: 10.1016/J.MTCOMM.2022.103969
Google Scholar
[15]
Ö. Civalek, B. Uzun, M.Ö. Yaylı, Size dependent torsional vibration of a restrained single walled carbon nanotube (SWCNT) via nonlocal strain gradient approach, Mater. Today Commun. 33, (2022) 104271
DOI: 10.1016/J.MTCOMM.2022.104271
Google Scholar
[16]
M.Ö. Yayli, S.Y. Kandemir, A.E. Çerçevik, Torsional vibration of cracked carbon nanotubes with torsional restraints using Eringen's nonlocal differential model, J. Low Freq. Noise Vibr. Act. Control. 38(1) (2019) 70-87
DOI: 10.1177/1461348418813255
Google Scholar
[17]
M.Ö. Yayli, On the torsional vibrations of restrained nanotubes embedded in an elastic medium, J. Braz. Soc. Mech. Sci. Eng. 40(9) (2018) 1-12
DOI: 10.1007/S40430-018-1346-7
Google Scholar
[18]
M.Ö. Yayli, Torsional vibrations of restrained nanotubes using modified couple stress theory, Microsyst. Technol. 24(8) (2018) 3425-3435
DOI: 10.1007/S00542-018-3735-3
Google Scholar
[19]
H.M. Numanoğlu, Ö. Civalek, On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM, Int. J. Mech. Sci. 161-162 (2019) 105076
DOI: 10.1016/J.IJMECSCI.2019.105076
Google Scholar
[20]
S. Guo, Y. He, D. Liu, J. Lei, L. Shen, Z. Li, Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect, Int. J. Mech. Sci. 119 (2016) 88-96
DOI: 10.1016/J.IJMECSCI.2016.09.036
Google Scholar
[21]
S.S. Abdullah, S.H. Hashemi, N.A. Hussein, R. Nazemnezhad, Three-dimensional thermal stress effects on nonlinear torsional vibration of carbon nanotubes embedded in an elastic medium, Nanoscale Microscale Thermophys. Eng. 25 (3-4) (2021) 179-206
DOI: 10.1080/15567265.2021.2011993
Google Scholar
[22]
S.S. Abdullah, S. Hosseini-Hashemi, N.A. Hussein, R. Nazemnezhad, Temperature change effect on torsional vibration of nanorods embedded in an elastic medium using Rayleigh–Ritz method, J. Braz. Soc. Mech. Sci. Eng. 42(11) (2020) 1-20
DOI: 10.1007/S40430-020-02664-0
Google Scholar
[23]
M. Arda, Torsional vibration analysis of carbon nanotubes using Maxwell and Kelvin-Voigt type viscoelastic material models, Eur. Mech. Sci. 4(3) (2020) 90-95
DOI: 10.26701/ems.669495
Google Scholar
[24]
M. Arda, M. Aydogdu, Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium, Adv. Sci. Technol. Res. J. 9(26) (2015) 28-33
DOI: 10.12913/22998624/2361
Google Scholar
[25]
M. Arda, M. Aydogdu, Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium, Microsyst. Technol. 25(10) (2019) 3943-3957
DOI: 10.1007/s00542-019-04446-8
Google Scholar
[26]
S. El-Borgi, P. Rajendran, M.I. Friswell, M. Trabelssi, J.N. Reddy, Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory, Compos. Struct. 186 (2018) 274-292
DOI: 10.1016/J.COMPSTRUCT.2017.12.002
Google Scholar
[27]
F. Khosravi, S.A. Hosseini, On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model, Mech. Based Des. Struct. Mach. 50(3) (2022) 1030-1053
DOI: 10.1080/15397734.2020.1744001
Google Scholar
[28]
S.J. Shakhlavi, S. Hosseini-Hashemi, R. Nazemnezhad, Torsional vibrations investigation of nonlinear nonlocal behavior in terms of functionally graded nanotubes, Int. J. Non Linear Mech. 124 (2020) 103513
DOI: 10.1016/J.IJNONLINMEC.2020.103513
Google Scholar
[29]
L. Li, Y. Hu, Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory, Compos. Struct. 172 (2017) 242-250
DOI: 10.1016/J.COMPSTRUCT.2017.03.097
Google Scholar
[30]
A.W. Leissa, M.S. Qatu, Vibration of Continuous Systems. McGraw-Hill Education, 2011. [Online]. Available: http://books.google.com.tr/books?id=59R1oLzNvCQC
Google Scholar
[31]
A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10(1) (1972) 1-16
DOI: 10.1016/0020-7225(72)90070-5
Google Scholar
[32]
A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54(9) 4703-4710
DOI: 10.1063/1.332803
Google Scholar
[33]
M. Arda, Axial dynamics of functionally graded Rayleigh-Bishop nanorods, Microsyst. Technol. 27(1) (2021) 269-282
DOI: 10.1007/s00542-020-04950-2
Google Scholar
[34]
E.M. Wright, L.V. Kantorovich, V.I. Krylov, C.D. Benster, Approximate methods of higher analysis, Math. Gaz. 44(348) (1960) 145. http://doi.org/10.
DOI: 10.2307/3612589
Google Scholar