Torsional Dynamics of Axially Graded Viscoelastic Carbon Nanotubes

Article Preview

Abstract:

Torsional vibration analysis of the axially functionally graded carbon nanotubes has been carried out. Nonlocal stress gradient elasticity theory has been used in continuum mechanics model of the carbon nanotube. Variation of the material properties of the axially graded nanostructure has been assumed in exponential form. Differently from the majority of literature works, viscous damping and nonlocal parameters have been assumed in grading form. Energy functional for the carbon nanotube has been achieved with minimum potential energy principle and weak form solution has been obtained with the Ritz Method. Effects of material grading, nonlocality and viscoelasticity to the torsional dynamics of axially graded carbon nanotube have been investigated. Results of the present work could be useful in modeling and production of axially functionally graded nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

89-96

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Cuando-Espitia, J. Bernal-Martínez, M. Torres-Cisneros, D. May-Arrioja, Laser-induced deposition of carbon nanotubes in fiber optic tips of MMI devices, Sens. 19(20) (2019) 1-15

DOI: 10.3390/S19204512

Google Scholar

[2] L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo, Y. Zhang, Y. Zhan, D. Li, Z. Che, W. Zhu, H. Zheng, J. Tang, J. Zhang, Y. Zhong, Y. Luo, J. Yu,  Z. Chen, A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity, Nanoscale. 12(26) (2020) 14188-14193

DOI: 10.1039/D0NR00139B

Google Scholar

[3] A.L. Khalaf, T.S. Hasan, H.A. Abdulbari, W.A. Kadhim, M.H. Yaacob, CNT-based tapered optical fiber for ethanol remote sensing over 3-km optical fiber, J. Mater. Res. Technol. 12 (2021) 1738-1746

DOI: 10.1016/J.JMRT.2021.03.103

Google Scholar

[4] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10(3) (1972) 233-248

DOI: 10.1016/0020-7225(72)90039-0

Google Scholar

[5] E.C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95(1-4) (1999) 299-314

Google Scholar

[6] B. Akgöz, Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J. Comput. Theor. Nanosci. 8(9) (2011) 1821-1827

DOI: 10.1166/JCTN.2011.1888

Google Scholar

[7] J.C. Hamilton, W.G. Wolfer, Theories of surface elasticity for nanoscale objects, Surf. Sci. 603(9) 1284-291

DOI: 10.1016/J.SUSC.2009.03.017

Google Scholar

[8] Z. Yao, C.C. Zhu, M. Cheng, J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation, Comput. Mater. Sci. 22(3-4) 180-184. http://doi.org

DOI: 10.1016/S0927-0256(01)00187-2

Google Scholar

[9] V.N. Popov, Lattice dynamics of single-walled boron nitride nanotubes, Phys. Rev. B. 67(8) (2003) 085408

DOI: 10.1103/PhysRevB.67.085408

Google Scholar

[10] M. Arda, M. Aydogdu, Torsional wave propagation of CNTs via different nonlocal gradient theories, in ICSV 2016: 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, 2016.

Google Scholar

[11] M. Arda, Torsional wave propagation in carbon nanotube bundles, Noise Theory Pract. 5(3) (2019) 7-20.

Google Scholar

[12] A. Fatahi-Vajari, A. Imam, Torsional vibration of single-walled carbon nanotubes using doublet mechanics, Z. Angew. Math. Phys. 67(4) (2016) 1-22

DOI: 10.1007/S00033-016-0675-6

Google Scholar

[13] A. Fatahi-Vajari, Z. Azimzadeh, M. Hussain, Nonlinear coupled axial–torsional vibration of single-walled carbon nanotubes using homotopy perturbation method, Micro Nano Lett. 14(14) (2019) 1366-1371

DOI: 10.1049/MNL.2019.0203

Google Scholar

[14] B. Uzun, M.Ö. Yaylı, Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory, Mater. Today Commun. 32 (2022) 103969

DOI: 10.1016/J.MTCOMM.2022.103969

Google Scholar

[15] Ö. Civalek, B. Uzun, M.Ö. Yaylı, Size dependent torsional vibration of a restrained single walled carbon nanotube (SWCNT) via nonlocal strain gradient approach, Mater. Today Commun. 33, (2022) 104271

DOI: 10.1016/J.MTCOMM.2022.104271

Google Scholar

[16] M.Ö. Yayli, S.Y. Kandemir, A.E. Çerçevik, Torsional vibration of cracked carbon nanotubes with torsional restraints using Eringen's nonlocal differential model, J. Low Freq. Noise Vibr. Act. Control. 38(1) (2019) 70-87

DOI: 10.1177/1461348418813255

Google Scholar

[17] M.Ö. Yayli, On the torsional vibrations of restrained nanotubes embedded in an elastic medium, J. Braz. Soc. Mech. Sci. Eng. 40(9) (2018) 1-12

DOI: 10.1007/S40430-018-1346-7

Google Scholar

[18] M.Ö. Yayli, Torsional vibrations of restrained nanotubes using modified couple stress theory, Microsyst. Technol. 24(8) (2018) 3425-3435

DOI: 10.1007/S00542-018-3735-3

Google Scholar

[19] H.M. Numanoğlu, Ö. Civalek, On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM, Int. J. Mech. Sci. 161-162 (2019) 105076

DOI: 10.1016/J.IJMECSCI.2019.105076

Google Scholar

[20] S. Guo, Y. He, D. Liu, J. Lei, L. Shen, Z. Li, Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect, Int. J. Mech. Sci. 119 (2016) 88-96

DOI: 10.1016/J.IJMECSCI.2016.09.036

Google Scholar

[21] S.S. Abdullah, S.H. Hashemi, N.A. Hussein, R. Nazemnezhad, Three-dimensional thermal stress effects on nonlinear torsional vibration of carbon nanotubes embedded in an elastic medium, Nanoscale Microscale Thermophys. Eng. 25 (3-4) (2021) 179-206

DOI: 10.1080/15567265.2021.2011993

Google Scholar

[22] S.S. Abdullah, S. Hosseini-Hashemi, N.A. Hussein, R. Nazemnezhad, Temperature change effect on torsional vibration of nanorods embedded in an elastic medium using Rayleigh–Ritz method, J. Braz. Soc. Mech. Sci. Eng. 42(11) (2020) 1-20

DOI: 10.1007/S40430-020-02664-0

Google Scholar

[23] M. Arda, Torsional vibration analysis of carbon nanotubes using Maxwell and Kelvin-Voigt type viscoelastic material models, Eur. Mech. Sci. 4(3) (2020) 90-95

DOI: 10.26701/ems.669495

Google Scholar

[24] M. Arda, M. Aydogdu, Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium, Adv. Sci. Technol. Res. J. 9(26) (2015) 28-33

DOI: 10.12913/22998624/2361

Google Scholar

[25] M. Arda, M. Aydogdu, Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium, Microsyst. Technol. 25(10) (2019) 3943-3957

DOI: 10.1007/s00542-019-04446-8

Google Scholar

[26] S. El-Borgi, P. Rajendran, M.I. Friswell, M. Trabelssi, J.N. Reddy, Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory, Compos. Struct. 186 (2018) 274-292

DOI: 10.1016/J.COMPSTRUCT.2017.12.002

Google Scholar

[27] F. Khosravi, S.A. Hosseini, On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model, Mech. Based Des. Struct. Mach. 50(3) (2022) 1030-1053

DOI: 10.1080/15397734.2020.1744001

Google Scholar

[28] S.J. Shakhlavi, S. Hosseini-Hashemi, R. Nazemnezhad, Torsional vibrations investigation of nonlinear nonlocal behavior in terms of functionally graded nanotubes, Int. J. Non Linear Mech. 124 (2020) 103513

DOI: 10.1016/J.IJNONLINMEC.2020.103513

Google Scholar

[29] L. Li, Y. Hu, Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory, Compos. Struct. 172 (2017) 242-250

DOI: 10.1016/J.COMPSTRUCT.2017.03.097

Google Scholar

[30] A.W. Leissa, M.S. Qatu, Vibration of Continuous Systems. McGraw-Hill Education, 2011. [Online]. Available: http://books.google.com.tr/books?id=59R1oLzNvCQC

Google Scholar

[31] A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10(1) (1972) 1-16

DOI: 10.1016/0020-7225(72)90070-5

Google Scholar

[32] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54(9) 4703-4710

DOI: 10.1063/1.332803

Google Scholar

[33] M. Arda, Axial dynamics of functionally graded Rayleigh-Bishop nanorods, Microsyst. Technol. 27(1) (2021) 269-282

DOI: 10.1007/s00542-020-04950-2

Google Scholar

[34] E.M. Wright, L.V. Kantorovich, V.I. Krylov, C.D. Benster, Approximate methods of higher analysis, Math. Gaz. 44(348) (1960) 145. http://doi.org/10.

DOI: 10.2307/3612589

Google Scholar