[1]
N.I. Istiqomah, A.T. Muzakki, A. Nofrianti, E. Suharyadi, T. Kato, S. Iwata, "The effect of silica on photocatalytic degradation of methylene blue using silica-coated nizn ferrite nanoparticles," Key Eng. Mater., vol. 855, 268–273, 2020.
DOI: 10.4028/www.scientific.net/KEM.855.268
Google Scholar
[2]
E.N. El Qada, S.J. Allen, G.M. Walker, "Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm," Chem. Eng. J., vol. 124, p.103–110, 2006
DOI: 10.1016/j.cej.2006.08.015
Google Scholar
[3]
K. Piaskowski, R. Świderska-Dąbrowska, P.K. Zarzycki, "Dye removal from water and wastewater using various physical, chemical, and biological processes," J. AOAC Int., vol. 101, p.1371–1384, 2018.
DOI: 10.5740/jaoacint.18-0051
Google Scholar
[4]
V. Katheresan, J. Kansedo, S.Y. Lau, "Efficiency of various recent wastewater dye removal methods: A review," J. Environ. Chem. Eng., vol. 6, p.4676–4697, 2018.
DOI: 10.1016/j.jece.2018.06.060
Google Scholar
[5]
Z. Cai, Y. Sun, W. Liu, F. Pan, P. Sun, J. Fu, "An overview of nanomaterials applied for removing dyes from wastewater," Environ. Sci. Pollut. Res., vol. 24, p.15882–15904, 2017.
DOI: 10.1007/s11356-017-9003-8
Google Scholar
[6]
E. Suharyadi, A. Muzakki, N.I. Istiqomah, D.L. Puspitarum, B. Purnama, D. Djuhana, "Reusability of Photocatalytic CoFe2O4 @ZnO Core–Shell Nanoparticles for Dye Degradation ," ECS J. Solid State Sci. Technol., vol. 11, pp.230-400, 2022.
DOI: 10.1149/2162-8777/ac4c7c
Google Scholar
[7]
X. Zhu, F. Zhang, M. Wang, J. Ding, S. Sun, J. Bao, C. Gao, "Facile synthesis, structure and visible light photocatalytic activityof recyclable ZnFe2O4 /TiO2," Appl. Surf. Sci., vol. 319, p.83–89, 2014.
DOI: 10.1016/j.apsusc.2014.07.051
Google Scholar
[8]
M. Suleman Tahir, N. Manzoor, M. Sagir, M.B. Tahir, T. Nawaz, "Fabrication of ZnFe2O4 modified TiO2 hybrid composites for photocatalytic reduction of CO2 into methanol," Fuel., vol. 285, pp.119-206, 2021.
DOI: 10.1016/j.fuel.2020.119206
Google Scholar
[9]
K. Atacan, N. Güy, S. Çakar, "Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite," Sak. Univ. J. Sci., vol. 22, p.1–1, 2018.
DOI: 10.16984/saufenbilder.373607
Google Scholar
[10]
H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, G.I. Kim, J.B. Kim, J.H. Kim, "Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater," Environ. Sci. Technol., vol 41, p.1372–1377, 2007.
DOI: 10.1021/es062062g
Google Scholar
[11]
G.G. Liu, X.Z. Zhang, Y.J. Xu, X.S. Niu, L.Q. Zheng, X.J. Ding, "Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2," Chemosphere., vol. 55, p.1287–1291, 2004.
DOI: 10.1016/j.chemosphere.2004.01.035
Google Scholar
[12]
J. Li, Q. Xiao, L. Li, J. Shen, D. Hu, "Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline," Appl. Surf. Sci., vol. 331, p.108–114, 2015.
DOI: 10.1016/j.apsusc.2015.01.001
Google Scholar
[13]
N. Welter, J. Leichtweis, S. Silvestri, P.I.Z. Sánchez, A.C.C. Mejía, E. Carissimi, "Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B," J. Alloys Compd., vol. 901, pp.163-758, 2022.
DOI: 10.1016/j.jallcom.2022.163758
Google Scholar
[14]
S.Y. Lee, S.J. Park, "TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., vol. 19, p.1761–1769, 2013.
DOI: 10.1016/j.jiec.2013.07.012
Google Scholar
[15]
Q. Xu, J. Feng, L. Li, Q. Xiao, J. Wang, "Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst," J. Alloys Compd., vol. 641, p.110–118, 2015.
DOI: 10.1016/j.jallcom.2015.04.076
Google Scholar
[16]
I. Firtina-Ertis, Ö. Kerkez-Kuyumcu, "Synthesis of NiFe2O4/TiO2-Ag+ S-scheme photocatalysts by a novel complex-assisted vapor thermal method for photocatalytic hydrogen production," J. Photochem. Photobiol. A Chem., vol. 432, pp.132-145, 2022.
DOI: 10.1016/j.jphotochem.2022.114106
Google Scholar
[17]
S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, "Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film," Catal. Today., vol. 278, p.280–290, 2016.
DOI: 10.1016/j.cattod.2015.12.028
Google Scholar
[18]
I. del Hierro, Y. Pérez, M. Fajardo, "Silanization of Iron Oxide Magnetic Nanoparticles with ionic liquids based on amino acids and its application as heterogeneous catalysts for Knoevenagel condensation reactions," Mol. Catal., vol 450, p.112–120, 2018.
DOI: 10.1016/j.mcat.2018.03.008
Google Scholar
[19]
A. Fujishima, X. Zhang, "Titanium dioxide photocatalysis: present situation and future approaches," Comptes Rendus Chim., vol. 9, p.750–760, 2006.
DOI: 10.1016/j.crci.2005.02.055
Google Scholar
[20]
T.B. Nguyen, C.P. Huang, R. an Doong, "Photocatalytic degradation of bisphenol A over a ZnFe2O4 /TiO2 nanocomposite under visible light," Sci. Total Environ., vol. 646, p.745–756, 2019.
DOI: 10.1016/j.scitotenv.2018.07.352
Google Scholar
[21]
R. Singh, S. Dutta, "A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts," Fuel., vol. 220, p.607–620, 2018.
DOI: 10.1016/j.fuel.2018.02.068
Google Scholar
[22]
J. Lei, Q. Shao, X. Wang, Q. Wei, L. Yang, H. Li, Y. Huang, B. Hou, "ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light," Mater. Res. Bull., vol. 95, p.253–260, 2017.
DOI: 10.1016/j.materresbull.2017.07.048
Google Scholar
[23]
Y. Lim, S.Y. Lee, D. Kim, M.K. Han, H.S. Han, S.H. Kang, J.K. Kim, U. Sim, Y. Il Park, "Expanded solar absorption spectrum to improve photoelectrochemical oxygen evolution reaction: Synergistic effect of upconversion nanoparticles and ZnFe2O4/TiO2," Chem. Eng. J., vol. 438, p.135503, 2022.
DOI: 10.1016/j.cej.2022.135503
Google Scholar
[24]
G. Rekhila, M. Trari, Y. Bessekhouad, "Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light," Appl. Water Sci., vol. 7, p.1273–1281, 2017.
DOI: 10.1007/s13201-015-0340-9
Google Scholar
[25]
C. Coromelci, M. Neamtu, M. Ignat, P. Samoila, M.F. Zaltariov, M. Palamaru, "Ultrasound assisted synthesis of heterostructured TiO2/ZnFe2O4 and TiO2/ZnFe1.98La0.02O4 systems as tunable photocatalysts for efficient organic pollutants removal," Ceram. Int., vol. 48, p.4829–4840, 2022.
DOI: 10.1016/j.ceramint.2021.11.019
Google Scholar
[26]
D.H. Kim, I.T. Nam, Y.K. Hong, S.H. Gee, M.H. Park, "Microstructure and magnetic properties of hexagonal barium ferrite thin films with various underlayers," J. Appl. Phys., vol. 91, p.8751–8753, 2002.
DOI: 10.1063/1.1447538
Google Scholar
[27]
M.A. Draz, H.H. El-Maghrabi, F.S. Soliman, H. Selim, A.A. Razik, A.E. sayed Amin, Y.M. Moustafa, A. Hamdy, A.A. Nada, "Large scale hybrid magnetic ZnFe2O4/TiO2 nanocomposite with highly photocatalytic activity for water splitting," J. Nanoparticle Res., vol. 23, pp.345-290, 2021.
DOI: 10.1007/s11051-020-05122-z
Google Scholar
[28]
J. Bai, "Synthesis and photocatalytic activity of cobalt oxide doped ZnFe2O4-Fe2O3-ZnO mixed oxides," Mater. Lett., vol. 63, p.1485–1488, 2009.
DOI: 10.1016/j.matlet.2009.03.052
Google Scholar
[29]
L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, "Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites," J. Alloys Compd., vol. 549, p.105–113, 2013.
DOI: 10.1016/j.jallcom.2012.09.063
Google Scholar
[30]
J. Zhang, M. Kuang, Y. Cao, Z. Ji, "Environment-friendly ternary ZnO/ZnFe2O4/TiO2 composite photocatalyst with synergistic enhanced photocatalytic activity under visible-light irradiation," Solid State Sci., vol. 129, pp.106-913, 2022.
DOI: 10.1016/j.solidstatesciences.2022.106913
Google Scholar
[31]
M. Chandrika, A. V. Ravindra, C. Rajesh, S.D. Ramarao, S. Ju, "Studies on structural and optical properties of nano ZnFe 2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route," Mater. Chem. Phys., vol. 230, p.107–113, 2019.
DOI: 10.1016/j.matchemphys.2019.03.059
Google Scholar
[32]
S. Rajarathinam, U. Ganguly, N. Venkataramani, "Impact of oxygen partial pressure on resistive switching characteristics of PLD deposited ZnFe2O4 thin films for RRAM devices," Ceram. Int., vol. 48, p.7876–7884, 2022.
DOI: 10.1016/j.ceramint.2021.11.335
Google Scholar
[33]
D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, "Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2," Nanomaterials., vol. 10, p.1–14, 2020.
DOI: 10.3390/nano10030546
Google Scholar
[34]
E.M. Bayan, V.Y. Storozhenko, M.A. Bunin, "Low-temperature solid-phase pyrolysis: A new method for the synthesis of nanocrystalline NiFe2O4 thin films," Mater. Lett., vol. 302, pp.130-385, 2021.
DOI: 10.1016/j.matlet.2021.130385
Google Scholar
[35]
Z.M. Niaki, M. Ghorbani, S.A. Ghoreishi, "Synthesis of ZnFe2O4@Uio-66 nanocomposite for the photocatalytic degradation of metronidazole antibiotic under visible light irradiation," J. Environ. Heal. Sci. Eng., vol. 19, p.1583–1596, 2021.
DOI: 10.1007/s40201-021-00713-x
Google Scholar
[36]
S. Zhao, M. Fu, Y. Li, X. Hu, C. Yuan, R. Pan, "Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal," Mol. Catal., vol. 507, pp.111-570, 2021.
DOI: 10.1016/j.mcat.2021.111570
Google Scholar
[37]
N. Ahmadpour, M.H. Sayadi, S. Sobhani, M. Hajiani, "A potential natural solar light active photocatalyst using magnetic ZnFe2O4 @ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution," J. Clean. Prod., vol. 268, pp.122-223, 2020.
DOI: 10.1016/j.jclepro.2020.122023
Google Scholar
[38]
G. Song, F. Xin, X. Yin, "Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol," J. Colloid Interface Sci., vol. 442, p.60–66, 2015.
DOI: 10.1016/j.jcis.2014.11.039
Google Scholar
[39]
X. Shihong, F. Daolun, S. Wenfeng, "Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst," J. Phys. Chem. C., vol. 113, p.2463–2467, 2009.
DOI: 10.1021/jp806704y
Google Scholar