Effect of TiO2 on Photocatalytic Activity of NiZnFe2O4/TiO2 Nanocrystalline for Methylene Blue Degradation

Article Preview

Abstract:

The photocatalytic activity of NiZnFe2O4/TiO2 core-shell gg nanocrystalline was carried out. The NiZnFe2O4/TiO2 core-shell was synthesized using co-precipitation method with various concentrations 1:0, 1:1, 1:2, 1:3, 1:4, and 1:5. X-ray diffraction spectra pattern showed crystallite size at various concentrations 1:0, 1:1, and 1:3, which of 5.00 nm, 4.90 nm, and 10.81 nm, respectively. The morphology of NiZnFe2O4 nanocrystalline was characterized by transmission electron microscopy which confirmed that the sample undergoes agglomeration with not uniform particle shape. The average particle size of the nanocrystalline was 10.26 nm. Fourier transform infra-red showed functional groups such as Ti-O-Ti, M-Otetra, and M-Oocta at 1473.62, 563 - 586, and 401- 424 cm-1. In addition, the presence of Ti-O-Ti and M-O functional groups indicates NiZnFe2O4/TiO2 core-shell has been formed. The absorbance spectrum of the NiZnFe2O4/TiO2 core-shell has an energy band gap in the range of 2.1 – 3.3 eV. The results of the Vibrating sample magnetometer showed saturation magnetization and coercivity values ​​in the range of 12.4 – 22.9 emu/gr and 47 - 55 Oe, which were correlated as soft magnetic properties. NiZnFe2O4/TiO2 was successfully degraded Methylene Blue that reach 99.8% under UV light irradiation. The addition of TiO2 increases degradation, TiO2 acts as a trapping state that inhibits electron-hole recombination which can prolong the reaction time between free electrons and MB solution molecules. This study revealed the high potential of NiZnFe2O4/TiO2 core-shell nanocrystalline in photocatalytic application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

117-129

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.I. Istiqomah, A.T. Muzakki, A. Nofrianti, E. Suharyadi, T. Kato, S. Iwata, "The effect of silica on photocatalytic degradation of methylene blue using silica-coated nizn ferrite nanoparticles," Key Eng. Mater., vol. 855, 268–273, 2020.

DOI: 10.4028/www.scientific.net/KEM.855.268

Google Scholar

[2] E.N. El Qada, S.J. Allen, G.M. Walker, "Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm," Chem. Eng. J., vol. 124, p.103–110, 2006

DOI: 10.1016/j.cej.2006.08.015

Google Scholar

[3] K. Piaskowski, R. Świderska-Dąbrowska, P.K. Zarzycki, "Dye removal from water and wastewater using various physical, chemical, and biological processes," J. AOAC Int., vol. 101, p.1371–1384, 2018.

DOI: 10.5740/jaoacint.18-0051

Google Scholar

[4] V. Katheresan, J. Kansedo, S.Y. Lau, "Efficiency of various recent wastewater dye removal methods: A review," J. Environ. Chem. Eng., vol. 6, p.4676–4697, 2018.

DOI: 10.1016/j.jece.2018.06.060

Google Scholar

[5] Z. Cai, Y. Sun, W. Liu, F. Pan, P. Sun, J. Fu, "An overview of nanomaterials applied for removing dyes from wastewater," Environ. Sci. Pollut. Res., vol. 24, p.15882–15904, 2017.

DOI: 10.1007/s11356-017-9003-8

Google Scholar

[6] E. Suharyadi, A. Muzakki, N.I. Istiqomah, D.L. Puspitarum, B. Purnama, D. Djuhana, "Reusability of Photocatalytic CoFe2O4 @ZnO Core–Shell Nanoparticles for Dye Degradation ," ECS J. Solid State Sci. Technol., vol. 11, pp.230-400, 2022.

DOI: 10.1149/2162-8777/ac4c7c

Google Scholar

[7] X. Zhu, F. Zhang, M. Wang, J. Ding, S. Sun, J. Bao, C. Gao, "Facile synthesis, structure and visible light photocatalytic activityof recyclable ZnFe2O4 /TiO2," Appl. Surf. Sci., vol. 319, p.83–89, 2014.

DOI: 10.1016/j.apsusc.2014.07.051

Google Scholar

[8] M. Suleman Tahir, N. Manzoor, M. Sagir, M.B. Tahir, T. Nawaz, "Fabrication of ZnFe2O4 modified TiO2 hybrid composites for photocatalytic reduction of CO2 into methanol," Fuel., vol. 285, pp.119-206, 2021.

DOI: 10.1016/j.fuel.2020.119206

Google Scholar

[9] K. Atacan, N. Güy, S. Çakar, "Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite," Sak. Univ. J. Sci., vol. 22, p.1–1, 2018.

DOI: 10.16984/saufenbilder.373607

Google Scholar

[10] H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, G.I. Kim, J.B. Kim, J.H. Kim, "Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater," Environ. Sci. Technol., vol 41, p.1372–1377, 2007.

DOI: 10.1021/es062062g

Google Scholar

[11] G.G. Liu, X.Z. Zhang, Y.J. Xu, X.S. Niu, L.Q. Zheng, X.J. Ding, "Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2," Chemosphere., vol. 55, p.1287–1291, 2004.

DOI: 10.1016/j.chemosphere.2004.01.035

Google Scholar

[12] J. Li, Q. Xiao, L. Li, J. Shen, D. Hu, "Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline," Appl. Surf. Sci., vol. 331, p.108–114, 2015.

DOI: 10.1016/j.apsusc.2015.01.001

Google Scholar

[13] N. Welter, J. Leichtweis, S. Silvestri, P.I.Z. Sánchez, A.C.C. Mejía, E. Carissimi, "Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B," J. Alloys Compd., vol. 901, pp.163-758, 2022.

DOI: 10.1016/j.jallcom.2022.163758

Google Scholar

[14] S.Y. Lee, S.J. Park, "TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., vol. 19, p.1761–1769, 2013.

DOI: 10.1016/j.jiec.2013.07.012

Google Scholar

[15] Q. Xu, J. Feng, L. Li, Q. Xiao, J. Wang, "Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst," J. Alloys Compd., vol. 641, p.110–118, 2015.

DOI: 10.1016/j.jallcom.2015.04.076

Google Scholar

[16] I. Firtina-Ertis, Ö. Kerkez-Kuyumcu, "Synthesis of NiFe2O4/TiO2-Ag+ S-scheme photocatalysts by a novel complex-assisted vapor thermal method for photocatalytic hydrogen production," J. Photochem. Photobiol. A Chem., vol. 432, pp.132-145, 2022.

DOI: 10.1016/j.jphotochem.2022.114106

Google Scholar

[17] S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, "Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film," Catal. Today., vol. 278, p.280–290, 2016.

DOI: 10.1016/j.cattod.2015.12.028

Google Scholar

[18] I. del Hierro, Y. Pérez, M. Fajardo, "Silanization of Iron Oxide Magnetic Nanoparticles with ionic liquids based on amino acids and its application as heterogeneous catalysts for Knoevenagel condensation reactions," Mol. Catal., vol 450, p.112–120, 2018.

DOI: 10.1016/j.mcat.2018.03.008

Google Scholar

[19] A. Fujishima, X. Zhang, "Titanium dioxide photocatalysis: present situation and future approaches," Comptes Rendus Chim., vol. 9, p.750–760, 2006.

DOI: 10.1016/j.crci.2005.02.055

Google Scholar

[20] T.B. Nguyen, C.P. Huang, R. an Doong, "Photocatalytic degradation of bisphenol A over a ZnFe2O4 /TiO2 nanocomposite under visible light," Sci. Total Environ., vol. 646, p.745–756, 2019.

DOI: 10.1016/j.scitotenv.2018.07.352

Google Scholar

[21] R. Singh, S. Dutta, "A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts," Fuel., vol. 220, p.607–620, 2018.

DOI: 10.1016/j.fuel.2018.02.068

Google Scholar

[22] J. Lei, Q. Shao, X. Wang, Q. Wei, L. Yang, H. Li, Y. Huang, B. Hou, "ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light," Mater. Res. Bull., vol. 95, p.253–260, 2017.

DOI: 10.1016/j.materresbull.2017.07.048

Google Scholar

[23] Y. Lim, S.Y. Lee, D. Kim, M.K. Han, H.S. Han, S.H. Kang, J.K. Kim, U. Sim, Y. Il Park, "Expanded solar absorption spectrum to improve photoelectrochemical oxygen evolution reaction: Synergistic effect of upconversion nanoparticles and ZnFe2O4/TiO2," Chem. Eng. J., vol. 438, p.135503, 2022.

DOI: 10.1016/j.cej.2022.135503

Google Scholar

[24] G. Rekhila, M. Trari, Y. Bessekhouad, "Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light," Appl. Water Sci., vol. 7, p.1273–1281, 2017.

DOI: 10.1007/s13201-015-0340-9

Google Scholar

[25] C. Coromelci, M. Neamtu, M. Ignat, P. Samoila, M.F. Zaltariov, M. Palamaru, "Ultrasound assisted synthesis of heterostructured TiO2/ZnFe2O4 and TiO2/ZnFe1.98La0.02O4 systems as tunable photocatalysts for efficient organic pollutants removal," Ceram. Int., vol. 48, p.4829–4840, 2022.

DOI: 10.1016/j.ceramint.2021.11.019

Google Scholar

[26] D.H. Kim, I.T. Nam, Y.K. Hong, S.H. Gee, M.H. Park, "Microstructure and magnetic properties of hexagonal barium ferrite thin films with various underlayers," J. Appl. Phys., vol. 91, p.8751–8753, 2002.

DOI: 10.1063/1.1447538

Google Scholar

[27] M.A. Draz, H.H. El-Maghrabi, F.S. Soliman, H. Selim, A.A. Razik, A.E. sayed Amin, Y.M. Moustafa, A. Hamdy, A.A. Nada, "Large scale hybrid magnetic ZnFe2O4/TiO2 nanocomposite with highly photocatalytic activity for water splitting," J. Nanoparticle Res., vol. 23, pp.345-290, 2021.

DOI: 10.1007/s11051-020-05122-z

Google Scholar

[28] J. Bai, "Synthesis and photocatalytic activity of cobalt oxide doped ZnFe2O4-Fe2O3-ZnO mixed oxides," Mater. Lett., vol. 63, p.1485–1488, 2009.

DOI: 10.1016/j.matlet.2009.03.052

Google Scholar

[29] L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, "Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites," J. Alloys Compd., vol. 549, p.105–113, 2013.

DOI: 10.1016/j.jallcom.2012.09.063

Google Scholar

[30] J. Zhang, M. Kuang, Y. Cao, Z. Ji, "Environment-friendly ternary ZnO/ZnFe2O4/TiO2 composite photocatalyst with synergistic enhanced photocatalytic activity under visible-light irradiation," Solid State Sci., vol. 129, pp.106-913, 2022.

DOI: 10.1016/j.solidstatesciences.2022.106913

Google Scholar

[31] M. Chandrika, A. V. Ravindra, C. Rajesh, S.D. Ramarao, S. Ju, "Studies on structural and optical properties of nano ZnFe 2O4 and ZnFe2O4-TiO2 composite synthesized by co-precipitation route," Mater. Chem. Phys., vol. 230, p.107–113, 2019.

DOI: 10.1016/j.matchemphys.2019.03.059

Google Scholar

[32] S. Rajarathinam, U. Ganguly, N. Venkataramani, "Impact of oxygen partial pressure on resistive switching characteristics of PLD deposited ZnFe2O4 thin films for RRAM devices," Ceram. Int., vol. 48, p.7876–7884, 2022.

DOI: 10.1016/j.ceramint.2021.11.335

Google Scholar

[33] D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, "Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2," Nanomaterials., vol. 10, p.1–14, 2020.

DOI: 10.3390/nano10030546

Google Scholar

[34] E.M. Bayan, V.Y. Storozhenko, M.A. Bunin, "Low-temperature solid-phase pyrolysis: A new method for the synthesis of nanocrystalline NiFe2O4 thin films," Mater. Lett., vol. 302, pp.130-385, 2021.

DOI: 10.1016/j.matlet.2021.130385

Google Scholar

[35] Z.M. Niaki, M. Ghorbani, S.A. Ghoreishi, "Synthesis of ZnFe2O4@Uio-66 nanocomposite for the photocatalytic degradation of metronidazole antibiotic under visible light irradiation," J. Environ. Heal. Sci. Eng., vol. 19, p.1583–1596, 2021.

DOI: 10.1007/s40201-021-00713-x

Google Scholar

[36] S. Zhao, M. Fu, Y. Li, X. Hu, C. Yuan, R. Pan, "Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal," Mol. Catal., vol. 507, pp.111-570, 2021.

DOI: 10.1016/j.mcat.2021.111570

Google Scholar

[37] N. Ahmadpour, M.H. Sayadi, S. Sobhani, M. Hajiani, "A potential natural solar light active photocatalyst using magnetic ZnFe2O4 @ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution," J. Clean. Prod., vol. 268, pp.122-223, 2020.

DOI: 10.1016/j.jclepro.2020.122023

Google Scholar

[38] G. Song, F. Xin, X. Yin, "Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol," J. Colloid Interface Sci., vol. 442, p.60–66, 2015.

DOI: 10.1016/j.jcis.2014.11.039

Google Scholar

[39] X. Shihong, F. Daolun, S. Wenfeng, "Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst," J. Phys. Chem. C., vol. 113, p.2463–2467, 2009.

DOI: 10.1021/jp806704y

Google Scholar