[1]
S. Ghosh (Nath), A. Debsarkar, A. Dutta, Technology alternatives for decontamination of arsenic-rich groundwater—A critical review, Elsevier B.V., 2019.
DOI: 10.1016/j.eti.2018.12.003
Google Scholar
[2]
D. Paul, S.K. Kazy, T. Das Banerjee, A.K. Gupta, T. Pal, P. Sar, Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater, Bioresour. Technol. 188 2015 14–23.
DOI: 10.1016/j.biortech.2015.02.039
Google Scholar
[3]
M.A. Jebeli, A. Maleki, M.A. Amoozegar, E. Kalantar, H. Izanloo, F. Gharibi, Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources, Chemosphere. 169 2017 636–641.
DOI: 10.1016/j.chemosphere.2016.11.129
Google Scholar
[4]
K. Lizama A., T.D. Fletcher, G. Sun, Removal processes for arsenic in constructed wetlands, Chemosphere. 84 2011 1032–1043.
DOI: 10.1016/j.chemosphere.2011.04.022
Google Scholar
[5]
G.K. Satyapal, S.K. Mishra, A. Srivastava, R.K. Ranjan, K. Prakash, R. Haque, N. Kumar, Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India, Biotechnol. Reports. 17 2018 117–125.
DOI: 10.1016/j.btre.2018.02.002
Google Scholar
[6]
B. Ebele, Mechanisms of arsenic toxicity and carcinogenesis, African J. Biochem. Res. 3 2009 232–237. http://www.academicjournals.org/AJBR.
Google Scholar
[7]
A.S. Butt, A. Rehman, Isolation of arsenite-oxidizing bacteria from industrial effluents and their potential use in wastewater treatment, World J. Microbiol. Biotechnol. 27 2011 2435–2441.
DOI: 10.1007/s11274-011-0716-4
Google Scholar
[8]
S.S. Ahluwalia, D. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresour. Technol. 98 2007 2243–2257.
DOI: 10.1016/j.biortech.2005.12.006
Google Scholar
[9]
P. Mondal, C.B. Majumder, B. Mohanty, Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon, J. Hazard. Mater. 153 2008 588–599.
DOI: 10.1016/j.jhazmat.2007.09.028
Google Scholar
[10]
J. Harvanová, L. Bloom, Capillary Electrophoresis Technique for Metal Species Determination: A Review, J. Liq. Chromatogr. Relat. Technol. 38 2015 371–380.
DOI: 10.1080/10826076.2014.941264
Google Scholar
[11]
S.K. Sen, P. Patra, C.R. Das, S. Raut, S. Raut, Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: An impact on its use in irrigation of wheat crop, Water Resour. Ind. 21 2019 100106.
DOI: 10.1016/j.wri.2019.100106
Google Scholar
[12]
S. Fazi, S. Amalfitano, B. Casentini, D. Davolos, B. Pietrangeli, S. Crognale, F. Lotti, S. Rossetti, Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments, Rend. Lincei. 27 2016 51–58.
DOI: 10.1007/s12210-015-0461-y
Google Scholar
[13]
M.I. Litter, M.E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin American waters for human consumption, Environ. Pollut. 158 2010 1105–1118.
DOI: 10.1016/j.envpol.2010.01.028
Google Scholar
[14]
M. Vidali, Bioremediation. An overview, Pure Appl. Chem. 73 (2001) 1163–1172.
Google Scholar
[15]
D. Shah, M.W.Y. Shen, W. Chen, N.A. Da Silva, Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p, J. Biotechnol. 150 2010 101–107.
DOI: 10.1016/j.jbiotec.2010.07.012
Google Scholar
[16]
G.K. Satyapal, S. Rani, Potential Role of Arsenic Resistant Bacteria in Bioremediation: Current Status and Future Prospects, J. Microb. Biochem. Technol. 8 2016.
DOI: 10.4172/1948-5948.1000294
Google Scholar
[17]
M.A. Jebelli, A. Maleki, M.A. Amoozegar, E. Kalantar, B. Shahmoradi, F. Gharibi, Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation, Ecotoxicol. Environ. Saf. 140 2017 170–176.
DOI: 10.1016/j.ecoenv.2017.02.051
Google Scholar
[18]
X. Dai, P. Li, J. Tu, R. Zhang, D. Wei, B. Li, Y. Wang, Z. Jiang, Evidence of arsenic mobilization mediated by an indigenous iron reducing bacterium from high arsenic groundwater aquifer in Hetao Basin of Inner Mongolia, China, Int. Biodeterior. Biodegradation. 128 2018 22–27.
DOI: 10.1016/j.ibiod.2016.05.012
Google Scholar
[19]
J.-D. Gu, Mining, pollution and site remediation, Int. Biodeterior. Biodegradation. 128 2018 1–2.
Google Scholar
[20]
E. Garcia-Dominguez, A. Mumford, E.D. Rhine, A. Paschal, L.Y. Young, Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments, FEMS Microbiol. Ecol. 66 2008 401–410.
DOI: 10.1111/j.1574-6941.2008.00569.x
Google Scholar
[21]
A. Sarkar, S.K. Kazy, P. Sar, Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment, Environ. Sci. Pollut. Res. 21 2014 8645–8662.
DOI: 10.1007/s11356-014-2759-1
Google Scholar
[22]
K. Tripti, Shardendu, Arsenic Removing Soil Indigenous Bacteria of Hyper Arsenic Contaminated Region in Bihar, Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88 (2018) 1605–1613.
DOI: 10.1007/s40011-017-0905-5
Google Scholar
[23]
F. Liu, G. Zhang, S. Liu, Z. Fu, J. Chen, C. Ma, Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources, Int. Biodeterior. Biodegradation. 126 2018 152–159.
DOI: 10.1016/j.ibiod.2017.10.011
Google Scholar
[24]
T.M. Gihring, G.K. Druschel, R.B. McCleskey, R.J. Hamers, J.F. Banfield, Rapid Arsenite Oxidation by Thermus aquaticus and Thermus thermophilus : Field and Laboratory Investigations, Environ. Sci. Technol. 35 2001 3857–3862.
DOI: 10.1021/es010816f
Google Scholar
[25]
S.K. Sen, S. Raut, T.K. Dora, P.K. Das Mohapatra, Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model, J. Hazard. Mater. 265 2014 47–60.
DOI: 10.1016/j.jhazmat.2013.11.036
Google Scholar
[26]
A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method, Am. J. Clin. Pathol. 45 1966 493–496.
DOI: 10.1093/ajcp/45.4_ts.493
Google Scholar
[27]
S.K. Sen, T.K. Dora, B. Bandyopadhyay, P.K. Das Mohapatra, S. Raut, Thermostable alpha-amylase enzyme production from hot spring isolates Alcaligenes faecalis SSB17 - Statistical optimization, Biocatal. Agric. Biotechnol. 3 2014 218–226.
DOI: 10.1016/j.bcab.2014.03.005
Google Scholar
[28]
D.T.K. Dora, Y.K. Mohanty, G.K. Roy, Hydrodynamics of three-phase fluidization of a homogeneous ternary mixture of regular particles-Experimental and statistical analysis, Powder Technol. 237 2013 594–601.
DOI: 10.1016/j.powtec.2012.12.056
Google Scholar
[29]
T.K. Dora, Y.K. Mohanty, G.K. Roy, B. Sarangi, Adsorption studies of As(III) from wastewater with a novel adsorbent in a three-phase fluidized bed by using response surface method, J. Environ. Chem. Eng. 1 2013 150–158.
DOI: 10.1016/j.jece.2013.04.011
Google Scholar
[30]
E.P.C. Rocha, A. Sekowska, A. Danchin, Sulphur islands in the Escherichia coli genome: markers of the cell's architecture?, FEBS Lett. 476 2000 8–11.
DOI: 10.1016/s0014-5793(00)01660-4
Google Scholar
[31]
R. Biswas, V. Vivekanand, A. Saha, A. Ghosh, A. Sarkar, Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation, Int. Biodeterior. Biodegradation. 136 2019 55–62.
DOI: 10.1016/j.ibiod.2018.10.006
Google Scholar
[32]
S.C.B. Myneni, S.J. Traina, T.J. Logan, G.A. Waychunas, Oxyanion behavior in alkaline environments: Sorption and desorption of arsenate in ettringite, Environ. Sci. Technol. 31 1997 1761–1768.
DOI: 10.1021/es9607594
Google Scholar
[33]
S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces, Geochim. Cosmochim. Acta. 62 1998 3285–3300.
DOI: 10.1016/s0016-7037(98)00222-1
Google Scholar
[34]
K.R. Parmar, D.T.K. Dora, K.K. Pant, S. Roy, An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption, J. Hazard. Mater. 375 2019 206–215.
DOI: 10.1016/j.jhazmat.2019.04.017
Google Scholar