Bioremediation of Arsenic from Wastewater Using Hotspring Isolate Consortium - Experimental and Kinetic Study

Article Preview

Abstract:

Arsenic in the water bodies being a serious menace for human and living organisms. To tackle this arsenic contaminant, a series experiments were conducted on biosorption of arsenic using isolated from soil and water sample of Taptapani Hotspring of Odisha, India. Out of the various collected microorganisms three isolates viz. Exiguobacterium sp.(SSB11), Alcaligenesfaecalis DZ2(SSB17) and Lysinibacillussphaericus SI-3(SSB58) possess better affinity towards heavy metals. By exploring this, the consortium of these microorganisms was chosen for bioremediation of As(III) from waste water. As revealed from experiments, the maximum adsorption capacity of the consortium isolates were observed to be 51 g/g. Further, the biosorption kinetics were tested with two robust isotherms viz. Freundlich and Langmuir, thereby revealing better agreement with the Freundlich isotherm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1104)

Pages:

131-142

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ghosh (Nath), A. Debsarkar, A. Dutta, Technology alternatives for decontamination of arsenic-rich groundwater—A critical review, Elsevier B.V., 2019.

DOI: 10.1016/j.eti.2018.12.003

Google Scholar

[2] D. Paul, S.K. Kazy, T. Das Banerjee, A.K. Gupta, T. Pal, P. Sar, Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater, Bioresour. Technol. 188 2015 14–23.

DOI: 10.1016/j.biortech.2015.02.039

Google Scholar

[3] M.A. Jebeli, A. Maleki, M.A. Amoozegar, E. Kalantar, H. Izanloo, F. Gharibi, Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources, Chemosphere. 169 2017 636–641.

DOI: 10.1016/j.chemosphere.2016.11.129

Google Scholar

[4] K. Lizama A., T.D. Fletcher, G. Sun, Removal processes for arsenic in constructed wetlands, Chemosphere. 84 2011 1032–1043.

DOI: 10.1016/j.chemosphere.2011.04.022

Google Scholar

[5] G.K. Satyapal, S.K. Mishra, A. Srivastava, R.K. Ranjan, K. Prakash, R. Haque, N. Kumar, Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India, Biotechnol. Reports. 17 2018 117–125.

DOI: 10.1016/j.btre.2018.02.002

Google Scholar

[6] B. Ebele, Mechanisms of arsenic toxicity and carcinogenesis, African J. Biochem. Res. 3 2009 232–237. http://www.academicjournals.org/AJBR.

Google Scholar

[7] A.S. Butt, A. Rehman, Isolation of arsenite-oxidizing bacteria from industrial effluents and their potential use in wastewater treatment, World J. Microbiol. Biotechnol. 27 2011 2435–2441.

DOI: 10.1007/s11274-011-0716-4

Google Scholar

[8] S.S. Ahluwalia, D. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresour. Technol. 98 2007 2243–2257.

DOI: 10.1016/j.biortech.2005.12.006

Google Scholar

[9] P. Mondal, C.B. Majumder, B. Mohanty, Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon, J. Hazard. Mater. 153 2008 588–599.

DOI: 10.1016/j.jhazmat.2007.09.028

Google Scholar

[10] J. Harvanová, L. Bloom, Capillary Electrophoresis Technique for Metal Species Determination: A Review, J. Liq. Chromatogr. Relat. Technol. 38 2015 371–380.

DOI: 10.1080/10826076.2014.941264

Google Scholar

[11] S.K. Sen, P. Patra, C.R. Das, S. Raut, S. Raut, Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: An impact on its use in irrigation of wheat crop, Water Resour. Ind. 21 2019 100106.

DOI: 10.1016/j.wri.2019.100106

Google Scholar

[12] S. Fazi, S. Amalfitano, B. Casentini, D. Davolos, B. Pietrangeli, S. Crognale, F. Lotti, S. Rossetti, Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments, Rend. Lincei. 27 2016 51–58.

DOI: 10.1007/s12210-015-0461-y

Google Scholar

[13] M.I. Litter, M.E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin American waters for human consumption, Environ. Pollut. 158 2010 1105–1118.

DOI: 10.1016/j.envpol.2010.01.028

Google Scholar

[14] M. Vidali, Bioremediation. An overview, Pure Appl. Chem. 73 (2001) 1163–1172.

Google Scholar

[15] D. Shah, M.W.Y. Shen, W. Chen, N.A. Da Silva, Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p, J. Biotechnol. 150 2010 101–107.

DOI: 10.1016/j.jbiotec.2010.07.012

Google Scholar

[16] G.K. Satyapal, S. Rani, Potential Role of Arsenic Resistant Bacteria in Bioremediation: Current Status and Future Prospects, J. Microb. Biochem. Technol. 8 2016.

DOI: 10.4172/1948-5948.1000294

Google Scholar

[17] M.A. Jebelli, A. Maleki, M.A. Amoozegar, E. Kalantar, B. Shahmoradi, F. Gharibi, Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation, Ecotoxicol. Environ. Saf. 140 2017 170–176.

DOI: 10.1016/j.ecoenv.2017.02.051

Google Scholar

[18] X. Dai, P. Li, J. Tu, R. Zhang, D. Wei, B. Li, Y. Wang, Z. Jiang, Evidence of arsenic mobilization mediated by an indigenous iron reducing bacterium from high arsenic groundwater aquifer in Hetao Basin of Inner Mongolia, China, Int. Biodeterior. Biodegradation. 128 2018 22–27.

DOI: 10.1016/j.ibiod.2016.05.012

Google Scholar

[19] J.-D. Gu, Mining, pollution and site remediation, Int. Biodeterior. Biodegradation. 128 2018 1–2.

Google Scholar

[20] E. Garcia-Dominguez, A. Mumford, E.D. Rhine, A. Paschal, L.Y. Young, Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments, FEMS Microbiol. Ecol. 66 2008 401–410.

DOI: 10.1111/j.1574-6941.2008.00569.x

Google Scholar

[21] A. Sarkar, S.K. Kazy, P. Sar, Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment, Environ. Sci. Pollut. Res. 21 2014 8645–8662.

DOI: 10.1007/s11356-014-2759-1

Google Scholar

[22] K. Tripti, Shardendu, Arsenic Removing Soil Indigenous Bacteria of Hyper Arsenic Contaminated Region in Bihar, Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88 (2018) 1605–1613.

DOI: 10.1007/s40011-017-0905-5

Google Scholar

[23] F. Liu, G. Zhang, S. Liu, Z. Fu, J. Chen, C. Ma, Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources, Int. Biodeterior. Biodegradation. 126 2018 152–159.

DOI: 10.1016/j.ibiod.2017.10.011

Google Scholar

[24] T.M. Gihring, G.K. Druschel, R.B. McCleskey, R.J. Hamers, J.F. Banfield, Rapid Arsenite Oxidation by Thermus aquaticus and Thermus thermophilus : Field and Laboratory Investigations, Environ. Sci. Technol. 35 2001 3857–3862.

DOI: 10.1021/es010816f

Google Scholar

[25] S.K. Sen, S. Raut, T.K. Dora, P.K. Das Mohapatra, Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model, J. Hazard. Mater. 265 2014 47–60.

DOI: 10.1016/j.jhazmat.2013.11.036

Google Scholar

[26] A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method, Am. J. Clin. Pathol. 45 1966 493–496.

DOI: 10.1093/ajcp/45.4_ts.493

Google Scholar

[27] S.K. Sen, T.K. Dora, B. Bandyopadhyay, P.K. Das Mohapatra, S. Raut, Thermostable alpha-amylase enzyme production from hot spring isolates Alcaligenes faecalis SSB17 - Statistical optimization, Biocatal. Agric. Biotechnol. 3 2014 218–226.

DOI: 10.1016/j.bcab.2014.03.005

Google Scholar

[28] D.T.K. Dora, Y.K. Mohanty, G.K. Roy, Hydrodynamics of three-phase fluidization of a homogeneous ternary mixture of regular particles-Experimental and statistical analysis, Powder Technol. 237 2013 594–601.

DOI: 10.1016/j.powtec.2012.12.056

Google Scholar

[29] T.K. Dora, Y.K. Mohanty, G.K. Roy, B. Sarangi, Adsorption studies of As(III) from wastewater with a novel adsorbent in a three-phase fluidized bed by using response surface method, J. Environ. Chem. Eng. 1 2013 150–158.

DOI: 10.1016/j.jece.2013.04.011

Google Scholar

[30] E.P.C. Rocha, A. Sekowska, A. Danchin, Sulphur islands in the Escherichia coli genome: markers of the cell's architecture?, FEBS Lett. 476 2000 8–11.

DOI: 10.1016/s0014-5793(00)01660-4

Google Scholar

[31] R. Biswas, V. Vivekanand, A. Saha, A. Ghosh, A. Sarkar, Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation, Int. Biodeterior. Biodegradation. 136 2019 55–62.

DOI: 10.1016/j.ibiod.2018.10.006

Google Scholar

[32] S.C.B. Myneni, S.J. Traina, T.J. Logan, G.A. Waychunas, Oxyanion behavior in alkaline environments: Sorption and desorption of arsenate in ettringite, Environ. Sci. Technol. 31 1997 1761–1768.

DOI: 10.1021/es9607594

Google Scholar

[33] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces, Geochim. Cosmochim. Acta. 62 1998 3285–3300.

DOI: 10.1016/s0016-7037(98)00222-1

Google Scholar

[34] K.R. Parmar, D.T.K. Dora, K.K. Pant, S. Roy, An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption, J. Hazard. Mater. 375 2019 206–215.

DOI: 10.1016/j.jhazmat.2019.04.017

Google Scholar