Assessment of Mechanical Properties and Microstructure of EUROFER97 Steel after Thermo-Mechanical Treatments

Article Preview

Abstract:

EUROFER97 martensitic steel is recognized in EU as the reference material for the test blanket module in ITER reactor and for structural sections subject to high radiation doses in DEMO reactor. An extended experimental campaign has been carried out with the scope of improving strength without loss of ductility. The main idea behind the present study is to reach the goal through grain refinement achieved by cold rolling and heat treatments for inducing recrystallization of the work hardened structure. A combination of five cold rolling reduction ratios (CR) (20%, 40%, 50%, 60%, 80%) and eight heat treatments in the temperature range 400-750°C (steps of 50 °C) with soaking time of 1 hour has been examined to describe the evolution of microstructure and mechanical properties. The strength of deformed samples decreases as the heat treatment temperature increases and the change is more pronounced in the samples cold-rolled with higher CR ratios. The results showed that cold rolling with CR of 80% followed by a treatment at 650 °C produces a fully recrystallized structure with sub-micrometric grains which guarantees improved yield stress and hardness than standard EUROFER97 steel, with a comparable total elongation. In conclusion, this work demonstrated the feasibility to strengthen EUROFER97 without compromising its ductility.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1105)

Pages:

47-52

Citation:

Online since:

November 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, H. Zimmermann, EUROFER 97 Tensile, Charpy, Creep and Structural Tests. Report FZKA6911, Eurofusion programme, 2003.

Google Scholar

[2] K.D. Zilnyk, V.B. Oliveira, H.R.Z. Sandim, A. Möslang, D. Raabe, Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study, Journal of Nuclear Materials, 462 (2015) 360–367.

DOI: 10.1016/j.jnucmat.2014.12.112

Google Scholar

[3] J. Hoffmann, M. Rieth, M. Klimenkov, S. Baumgärtner, Improvement of EUROFER's mechanical properties by optimized chemical compositions and thermo-mechanical treatments, Nuclear Materials and Energy, 16 (2018) 88–94.

DOI: 10.1016/j.nme.2018.05.028

Google Scholar

[4] G. Stornelli, M. Rallini, C. Testani, R. Montanari, A. Di Schino, G. Stornelli, R. Montanari, C. Testani, A. Di Schino, Effect of thermo-mechanical treatment on EUROFER 97 steel for nuclear fusion application, La Metallurgia Italiana, 112(10) (2020) 34–44.

DOI: 10.4028/www.scientific.net/msf.1016.1392

Google Scholar

[5] X. Chen, A. Bhattacharya, M.A. Sokolov, L.N. Clowers, Y. Yamamoto, T. Graening, K.D. Linton, Y. Katoh, M. Rieth, Mechanical properties and microstructure characterization of Eurofer97 steel variants in EUROfusion program, Fusion Engineering and Design, 146 (2019) 2227–2232.

DOI: 10.1016/j.fusengdes.2019.03.158

Google Scholar

[6] G. Stornelli, R. Montanari, C. Testani, L. Pilloni, G. Napoli, O. Di Pietro, A. Di Schino, Microstructure refinement effect on EUROFER 97 steel for nuclear fusion application, Materials Science Forum, 1016 MSF (2021) 1392–1397.

DOI: 10.4028/www.scientific.net/msf.1016.1392

Google Scholar

[7] S.J. Zinkle, A. Möslang, Evaluation of irradiation facility options for fusion materials research and development, in: Fusion Engineering and Design, 2013: p.472–482.

DOI: 10.1016/j.fusengdes.2013.02.081

Google Scholar

[8] A. Di Schino, C. Testani, L. Pilloni, Effect of thermo-mechanical parameters on the mechanical properties of Eurofer97 steel for nuclear applications, Open Engineering, 8 (2018) 349–353.

DOI: 10.1515/eng-2018-0040

Google Scholar

[9] G. Stornelli, M. Gaggiotti, D.M. Gattia, R. Schmidt, M. Sgambetterra, A. Tselikova, G. Zucca, A. Di Schino, Vanadium alloying in s355 structural steel: effect on residual austenite formation in welded joints heat affected zone, Acta Metallurgica Slovaca, 28(3) (2022) 127–132.

DOI: 10.36547/ams.28.3.1535

Google Scholar

[10] G. Stornelli, A. Tselikova, D. Mirabile Gattia, M. Mortello, R. Schmidt, M. Sgambetterra, C. Testani, G. Zucca, A. Di Schino, Influence of Vanadium micro-alloying on the microstructure of structural high strength steels welded joints, Materials, 16(7) (2023) 2897

DOI: 10.3390/ma16072897

Google Scholar

[11] A. Di Schino, M. Gaggiotti, D. Mirabile Gattia, R. Schmidt, M. Sgambetterra, G. Stornelli, C. Testani, A. Tselikova, G. Zucca, Vanadium micro-alloying effect on heat affected zone microstructure in welded joints for structural applications, La Metallurgia Italiana, 113 (2022) 8–14.

DOI: 10.3390/ma16072897

Google Scholar

[12] A.A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, H. Tanigawa, Current status and recent research achievements in ferritic/martensitic steels, Journal of Nuclear Materials, 455 (2014) 269–276.

DOI: 10.1016/j.jnucmat.2014.06.017

Google Scholar

[13] K. Mergia, N. Boukos, Structural, thermal, electrical and magnetic properties of Eurofer 97 steel, Journal of Nuclear Materials, 373 (2008) 1–8.

DOI: 10.1016/j.jnucmat.2007.03.267

Google Scholar

[14] R. Coppola, M. Klimenkov, Dose dependence of micro-voids distributions in low-temperature neutron irradiated Eurofer97 steel, Metals (Basel), 9 (2019) 1–12.

DOI: 10.3390/met9050552

Google Scholar

[15] C. Cristalli, L. Pilloni, O. Tassa, L. Bozzetto, Mechanical properties of several newly produced RAFM steels with Tungsten content in the range of 2 wt%, Nuclear Materials and Energy, 25 (2020) 100793.

DOI: 10.1016/j.nme.2020.100793

Google Scholar

[16] V.B. Oliveira, H.R.Z. Sandim, D. Raabe, Abnormal grain growth in Eurofer-97 steel in the ferrite phase field, Journal of Nuclear Materials, 485 (2017) 23–38.

DOI: 10.1016/j.jnucmat.2016.12.019

Google Scholar

[17] L. Pilloni, C. Cristalli, O. Tassa, I. Salvatori, S. Storai, Grain size reduction strategies on Eurofer, Nuclear Materials and Energy, 17 (2018) 129–136.

DOI: 10.1016/j.nme.2018.06.023

Google Scholar

[18] G. Stornelli, A. Di Schino, S. Mancini, R. Montanari, C. Testani, A. Varone, Grain refinement and improved mechanical properties of eurofer97 by thermo-mechanical treatments, Applied Sciences (Switzerland), 11 (2021) 10598.

DOI: 10.3390/app112210598

Google Scholar

[19] S. Mancini, L. Langellotto, P.E. Di Nunzio, C. Zitelli, A. Di Schino, Defect reduction and quality optimization by modeling plastic deformation and metallurgical evolution in ferritic stainless steels, Metals (Basel), 10(2) (2020) 186.

DOI: 10.3390/met10020186

Google Scholar

[20] R.E.; Reed-Hill, R. Abbaschian, L. Abbaschian, Physical Metallurgy Principles, 1973.

Google Scholar

[21] E. Materna-Morris, H.C. Schneider, A. Möslang, Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C, Journal of Nuclear Materials, 455 (2014) 728–734.

DOI: 10.1016/j.jnucmat.2014.08.054

Google Scholar