Ten-Year Recycling of Vanadium Alloy in Fusion Reactors

Article Preview

Abstract:

Low-activation characteristics and dominant radioactive isotopes limiting materials recycling were analyzed for a fusion-reactor-grade vanadium alloy, NIFS-HEAT-2. In order to reduce contact dose rate after use in fusion reactors, purification of the base metal vanadium was examined by chemical aqueous separation, electron-beam vacuum melting and zone refining, focusing on the removal of the dominant high-activation impurities, such as Co, Cu, Fe, Nb, Ni and Mo. Based on the measured impurity levels, remote recycling of vanadium alloy is possible within ten years after use in fusion reactors under operation condition with 100 dpa irradiation. Early quasi-hands-on recycling requires further purification and re-design of alloy composition especially with low Ti and high Cr content. The present paper discusses status of material R&Ds for the ten-year recycling and impact on operation of fusion reactors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1106)

Pages:

117-126

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater., 417 (2011) 9-15.

DOI: 10.1016/j.jnucmat.2011.05.023

Google Scholar

[2] H.M. Chung, B.A. Loomis, D.L. Smith, Development and testing of vanadium alloys for fusion applications, J. Nucl. Mater. 239 (1996) 139-156.

DOI: 10.1016/s0022-3115(96)00676-9

Google Scholar

[3] T. Nagasaka, T. Muroga, T. Tanaka, A. Sagara, K. Fukumoto, P.F. Zheng, R.J. Kurtz, High-temperature creep properties of NIFSHEAT-2 high-purity low-activation vanadium alloy, Nucl. Fusion 59 (2019) 096046.

DOI: 10.1088/1741-4326/ab1c8f

Google Scholar

[4] T. Nagasaka, T. Muroga, Vanadium for Nuclear Systems, in: Rudy J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials - Second Edition, Elsevier, 2020, pp.1-18.

DOI: 10.1016/b978-0-12-803581-8.00730-x

Google Scholar

[5] T. Tanaka, T. Muroga, A. Sagara, Tritium Self-sufficiency and neutron shielding performance of self-cooled liquid blanket system for helical reactor, Fusion Sci. Technol. 47 (2005) 530-534.

DOI: 10.13182/fst05-a738

Google Scholar

[6] F. Najmabadi and The Aries Team, Overview of the ARIES-RS reversed-shear tokamak power plant study, Fusion Eng. Des. 38 (1997) 3–25.

DOI: 10.1016/s0920-3796(97)00153-1

Google Scholar

[7] B.A. Loomis, L.J. Nowicki, D.L. Smith, DOE/ER-0313/18, 1995, pp.265-272.

Google Scholar

[8] Proc. 2nd Workshop on Vanadium Alloy Development for Fusion, ECN Petten, The Netherlands, May 20-22, 1996.

Google Scholar

[9] W.R. Johnson and J.P. Smith, Fabrication of a 1200 kg ingot of V-4Cr-4Ti alloy for the DIII-D radiative divertor program, J. Nucl. Mater. 258-263 (1998) 1425-1430.

DOI: 10.1016/s0022-3115(98)00209-8

Google Scholar

[10] E.T. Cheng, D.K. Sze, J.A. Sommers, O.T. Farmer III, Materials Recycling Considerations for D-T Fusion Reactors, Fusion Technol. 21 (1992) 2001-2008.

DOI: 10.13182/fst92-a30015

Google Scholar

[11] T.J. Dolan, G.J. Butterworth, Vanadium Recycling, Fusion Tecnol. 26 (1994) 1014-1020.

DOI: 10.13182/fst94-a40288

Google Scholar

[12] D.G. Dran, Toward improved guidelines for reduced activation materials development in the US, J. Nucl. Mater. 191-194 (1992) 1439-1443.

DOI: 10.1016/0022-3115(92)90713-u

Google Scholar

[13] A. Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich, Low-activation ferritic and martensitic steels for fusion application, J. Nucl. Mater. 233-237 (1996) 138-147.

DOI: 10.1016/s0022-3115(96)00327-3

Google Scholar

[14] K. Shiba, A. Hishinuma, A. Tohyama, K. Masamura, Properties of Low Activation Ferritic Steel F82H IEA Heat, JAERI-Tech 97-038, 1997, Japan Atomic Energy Research Institute.

Google Scholar

[15] T. Nagasaka, T. Muroga, Y.C. Wu, Z.Y. Xu, M. Imamura, Low Activation Characteristics of Several Heats of V-4Cr-4Ti Ingot, J. Plasma Fusion Res. SERIES 5 (2002) 545-550.

Google Scholar

[16] C.J. Werner, J.C. Armstrong, F.B. Brown, J.S. Bull, L. Casswell, L.J. Cox, D.A. Dixon, R.A. Forster III, J.T. Goorley, H.G. Hughes III, J.A. Favorite, R.L. Martz, S.G. Mashnik, M.E. Rising, C.J. Solomon Jr., A. Sood, J.E. Sweezy, A.J. Zukaitis, C.A. Anderson, J.S. Elson, J.W. Durkee Jr., R.C. Johns, G.W. McKinney, G.E. McMath, J.S. Hendricks, D.B. Pelowitz, R.E. Prael, T.E. Booth, M.R. James, M.L. Fensin, T.A. Wilcox, B.C. Kiedrowski. MCNP User's Manual Code Version 6.2. Los Alamos National Laboratory Tech. Rep. LA-UR-17-29981, 2017.

DOI: 10.1016/j.anucene.2015.02.020

Google Scholar

[17] K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol. 48 (2011) 1-30.

DOI: 10.1080/18811248.2011.9711675

Google Scholar

[18] J-Ch. Sublet, J.W. Eastwood, J.G. Morgan, M.R. Gilbert, M. Fleming, W. Arter. FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling. Nuclear Data Sheets 139 (2017) 77-137.

DOI: 10.1016/j.nds.2017.01.002

Google Scholar

[19] B.A. Loomis, H.M. Chung, L.J. Nowicki and D.L. Smith, Effects of neutron irradiation and hydrogen on ductile-brittle transition temperatures of V-Cr-Ti alloys, J. Nucl. Mater. 212-215 (1994) 799-803.

DOI: 10.1016/0022-3115(94)90166-x

Google Scholar

[20] T. Nagasaka, T. Muroga, K.-i. Fukumoto, H. Watanabe, M.L. Grossbeck and J.M. Chen, Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials, Nuclear Fusion 46 (2006) 618-625.

DOI: 10.1088/0029-5515/46/5/012

Google Scholar

[21] S. Sakurai, K. Nomura, H. Yoshinaga, J.J. Shen, T. Nagasaka, T. Muroga, Y. Matsukawa, R. Kasada, Effect of Cr and Ti concentration on mechanical properties of low-activation vanadium alloys for nuclear fusion reactor, 19th Intl. Conf. Fusion Reactor Mater., La Jolla, USA, Oct. 27-Nov. 1, 2019.

Google Scholar

[22] J.J. Shen, T. Nagasaka, M. Tokitani, T. Muroga, R. Kasada, S. Sakurai, Effects of titanium concentration on microstructure and mechanical properties of high-purity vanadium alloys, Mater. Des. 224 (2022) 111390.

DOI: 10.1016/j.matdes.2022.111390

Google Scholar

[23] T. Nagasaka, T. Tanaka, M. Kobayashi, K.-i. Fukumoto, T. Toyama, T. Sugawara, R. Kasada, Y. Yamauchi, K. Katayama, M. Oya, K. Yabuuchi, S. Sakurai, K. Nomura, Impurity control and re-design of composition toward ten-year materials recycling of vanadium alloys in fusion reactors, to be presented in 21st Intl. Conf. Fusion Reactor Mater., Granada, Spain, October 22–27, 2023.

Google Scholar

[24] K. Fukumoto, K. Tone, T. Onitsuka, T. Ishigami, Effect of Ti addition on microstructural evolution of V–Cr–Ti alloys to balance irradiation hardening with swelling suppression, Nucl. Mater. Energy 15 (2018) 122–127.

DOI: 10.1016/j.nme.2018.03.008

Google Scholar

[25] K.-i. Fukumoto, Y. Kitamura, S. Miura, K. Fujita, R. Ishigami, T. Nagasaka, Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 1.

DOI: 10.3390/qubs5010001

Google Scholar

[26] K.-i. Fukumoto, S. Miura, Y. Kitamura., R. Ishigami, T. Nagasaka. Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 26.

DOI: 10.3390/qubs5030026

Google Scholar

[27] B.A. Pint, S.J. Pawel, M. Howell, J.L. Moser, G.W. Garner, M.L. Santella, P.F. Tortorelli, F.W. Wiffen, J.R. DiStefano, Initial characterization of V–4Cr–4Ti and MHD coatings exposed to flowing Li, J. Nucl. Mater. 386–388 (2009) 712-715.

DOI: 10.1016/j.jnucmat.2008.12.295

Google Scholar

[28] O.I. Eliseeva, V.N. Fedirko, V.M. Chernov, L.P. Zavialsky, Corrosion of V–Ti–Cr alloys in liquid lithium: influence of alloy composition and concentration of nitrogen in lithium, J. Nucl. Mater. 283–287 (2000) 1282-1286.

DOI: 10.1016/s0022-3115(00)00121-5

Google Scholar

[29] Y. Yamauchi, Y. Tanoue, K. Keta, T. Nagasaka, J.J. Shen, S. Tomioka, Y. Matsumoto, Deuterium and helium desorption/retention properties of low-activation vanadium alloys possible for reuse in a short time in fusion reactors, to be presented in 21st Intl. Conf. Fusion Reactor Mater., Granada, Spain, October 22–27, 2023.

Google Scholar

[30] Y. Noguchi, M. Saito, T. Maruyama, N. Takeda, Design progress of ITER blanket remote handling system towards manufacturing, Fusion Eng. Des. 136 (2018) 722–728.

DOI: 10.1016/j.fusengdes.2018.03.068

Google Scholar

[31] Fusion Reactor System Laboratory, Concept Study of the Steady State Tokamak Reactor (SSTR), JAERI-M 91-081 (1991).

Google Scholar