[1]
H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater., 417 (2011) 9-15.
DOI: 10.1016/j.jnucmat.2011.05.023
Google Scholar
[2]
H.M. Chung, B.A. Loomis, D.L. Smith, Development and testing of vanadium alloys for fusion applications, J. Nucl. Mater. 239 (1996) 139-156.
DOI: 10.1016/s0022-3115(96)00676-9
Google Scholar
[3]
T. Nagasaka, T. Muroga, T. Tanaka, A. Sagara, K. Fukumoto, P.F. Zheng, R.J. Kurtz, High-temperature creep properties of NIFSHEAT-2 high-purity low-activation vanadium alloy, Nucl. Fusion 59 (2019) 096046.
DOI: 10.1088/1741-4326/ab1c8f
Google Scholar
[4]
T. Nagasaka, T. Muroga, Vanadium for Nuclear Systems, in: Rudy J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials - Second Edition, Elsevier, 2020, pp.1-18.
DOI: 10.1016/b978-0-12-803581-8.00730-x
Google Scholar
[5]
T. Tanaka, T. Muroga, A. Sagara, Tritium Self-sufficiency and neutron shielding performance of self-cooled liquid blanket system for helical reactor, Fusion Sci. Technol. 47 (2005) 530-534.
DOI: 10.13182/fst05-a738
Google Scholar
[6]
F. Najmabadi and The Aries Team, Overview of the ARIES-RS reversed-shear tokamak power plant study, Fusion Eng. Des. 38 (1997) 3–25.
DOI: 10.1016/s0920-3796(97)00153-1
Google Scholar
[7]
B.A. Loomis, L.J. Nowicki, D.L. Smith, DOE/ER-0313/18, 1995, pp.265-272.
Google Scholar
[8]
Proc. 2nd Workshop on Vanadium Alloy Development for Fusion, ECN Petten, The Netherlands, May 20-22, 1996.
Google Scholar
[9]
W.R. Johnson and J.P. Smith, Fabrication of a 1200 kg ingot of V-4Cr-4Ti alloy for the DIII-D radiative divertor program, J. Nucl. Mater. 258-263 (1998) 1425-1430.
DOI: 10.1016/s0022-3115(98)00209-8
Google Scholar
[10]
E.T. Cheng, D.K. Sze, J.A. Sommers, O.T. Farmer III, Materials Recycling Considerations for D-T Fusion Reactors, Fusion Technol. 21 (1992) 2001-2008.
DOI: 10.13182/fst92-a30015
Google Scholar
[11]
T.J. Dolan, G.J. Butterworth, Vanadium Recycling, Fusion Tecnol. 26 (1994) 1014-1020.
DOI: 10.13182/fst94-a40288
Google Scholar
[12]
D.G. Dran, Toward improved guidelines for reduced activation materials development in the US, J. Nucl. Mater. 191-194 (1992) 1439-1443.
DOI: 10.1016/0022-3115(92)90713-u
Google Scholar
[13]
A. Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich, Low-activation ferritic and martensitic steels for fusion application, J. Nucl. Mater. 233-237 (1996) 138-147.
DOI: 10.1016/s0022-3115(96)00327-3
Google Scholar
[14]
K. Shiba, A. Hishinuma, A. Tohyama, K. Masamura, Properties of Low Activation Ferritic Steel F82H IEA Heat, JAERI-Tech 97-038, 1997, Japan Atomic Energy Research Institute.
Google Scholar
[15]
T. Nagasaka, T. Muroga, Y.C. Wu, Z.Y. Xu, M. Imamura, Low Activation Characteristics of Several Heats of V-4Cr-4Ti Ingot, J. Plasma Fusion Res. SERIES 5 (2002) 545-550.
Google Scholar
[16]
C.J. Werner, J.C. Armstrong, F.B. Brown, J.S. Bull, L. Casswell, L.J. Cox, D.A. Dixon, R.A. Forster III, J.T. Goorley, H.G. Hughes III, J.A. Favorite, R.L. Martz, S.G. Mashnik, M.E. Rising, C.J. Solomon Jr., A. Sood, J.E. Sweezy, A.J. Zukaitis, C.A. Anderson, J.S. Elson, J.W. Durkee Jr., R.C. Johns, G.W. McKinney, G.E. McMath, J.S. Hendricks, D.B. Pelowitz, R.E. Prael, T.E. Booth, M.R. James, M.L. Fensin, T.A. Wilcox, B.C. Kiedrowski. MCNP User's Manual Code Version 6.2. Los Alamos National Laboratory Tech. Rep. LA-UR-17-29981, 2017.
DOI: 10.1016/j.anucene.2015.02.020
Google Scholar
[17]
K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol. 48 (2011) 1-30.
DOI: 10.1080/18811248.2011.9711675
Google Scholar
[18]
J-Ch. Sublet, J.W. Eastwood, J.G. Morgan, M.R. Gilbert, M. Fleming, W. Arter. FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling. Nuclear Data Sheets 139 (2017) 77-137.
DOI: 10.1016/j.nds.2017.01.002
Google Scholar
[19]
B.A. Loomis, H.M. Chung, L.J. Nowicki and D.L. Smith, Effects of neutron irradiation and hydrogen on ductile-brittle transition temperatures of V-Cr-Ti alloys, J. Nucl. Mater. 212-215 (1994) 799-803.
DOI: 10.1016/0022-3115(94)90166-x
Google Scholar
[20]
T. Nagasaka, T. Muroga, K.-i. Fukumoto, H. Watanabe, M.L. Grossbeck and J.M. Chen, Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials, Nuclear Fusion 46 (2006) 618-625.
DOI: 10.1088/0029-5515/46/5/012
Google Scholar
[21]
S. Sakurai, K. Nomura, H. Yoshinaga, J.J. Shen, T. Nagasaka, T. Muroga, Y. Matsukawa, R. Kasada, Effect of Cr and Ti concentration on mechanical properties of low-activation vanadium alloys for nuclear fusion reactor, 19th Intl. Conf. Fusion Reactor Mater., La Jolla, USA, Oct. 27-Nov. 1, 2019.
Google Scholar
[22]
J.J. Shen, T. Nagasaka, M. Tokitani, T. Muroga, R. Kasada, S. Sakurai, Effects of titanium concentration on microstructure and mechanical properties of high-purity vanadium alloys, Mater. Des. 224 (2022) 111390.
DOI: 10.1016/j.matdes.2022.111390
Google Scholar
[23]
T. Nagasaka, T. Tanaka, M. Kobayashi, K.-i. Fukumoto, T. Toyama, T. Sugawara, R. Kasada, Y. Yamauchi, K. Katayama, M. Oya, K. Yabuuchi, S. Sakurai, K. Nomura, Impurity control and re-design of composition toward ten-year materials recycling of vanadium alloys in fusion reactors, to be presented in 21st Intl. Conf. Fusion Reactor Mater., Granada, Spain, October 22–27, 2023.
Google Scholar
[24]
K. Fukumoto, K. Tone, T. Onitsuka, T. Ishigami, Effect of Ti addition on microstructural evolution of V–Cr–Ti alloys to balance irradiation hardening with swelling suppression, Nucl. Mater. Energy 15 (2018) 122–127.
DOI: 10.1016/j.nme.2018.03.008
Google Scholar
[25]
K.-i. Fukumoto, Y. Kitamura, S. Miura, K. Fujita, R. Ishigami, T. Nagasaka, Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 1.
DOI: 10.3390/qubs5010001
Google Scholar
[26]
K.-i. Fukumoto, S. Miura, Y. Kitamura., R. Ishigami, T. Nagasaka. Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 26.
DOI: 10.3390/qubs5030026
Google Scholar
[27]
B.A. Pint, S.J. Pawel, M. Howell, J.L. Moser, G.W. Garner, M.L. Santella, P.F. Tortorelli, F.W. Wiffen, J.R. DiStefano, Initial characterization of V–4Cr–4Ti and MHD coatings exposed to flowing Li, J. Nucl. Mater. 386–388 (2009) 712-715.
DOI: 10.1016/j.jnucmat.2008.12.295
Google Scholar
[28]
O.I. Eliseeva, V.N. Fedirko, V.M. Chernov, L.P. Zavialsky, Corrosion of V–Ti–Cr alloys in liquid lithium: influence of alloy composition and concentration of nitrogen in lithium, J. Nucl. Mater. 283–287 (2000) 1282-1286.
DOI: 10.1016/s0022-3115(00)00121-5
Google Scholar
[29]
Y. Yamauchi, Y. Tanoue, K. Keta, T. Nagasaka, J.J. Shen, S. Tomioka, Y. Matsumoto, Deuterium and helium desorption/retention properties of low-activation vanadium alloys possible for reuse in a short time in fusion reactors, to be presented in 21st Intl. Conf. Fusion Reactor Mater., Granada, Spain, October 22–27, 2023.
Google Scholar
[30]
Y. Noguchi, M. Saito, T. Maruyama, N. Takeda, Design progress of ITER blanket remote handling system towards manufacturing, Fusion Eng. Des. 136 (2018) 722–728.
DOI: 10.1016/j.fusengdes.2018.03.068
Google Scholar
[31]
Fusion Reactor System Laboratory, Concept Study of the Steady State Tokamak Reactor (SSTR), JAERI-M 91-081 (1991).
Google Scholar