Challenge to Performance Evaluation of Fusion Reactor Materials by Fission Neutron and Charged Particle Irradiation

Article Preview

Abstract:

Since there are no fusion reactors generating high-flux 14 MeV neutrons, it is necessary to evaluate materials’ performance in fusion reactors based on a correlation of fission neutron and charged particle irradiations. However, the irradiation tests involve various issues which prevent simple correlation and evaluation. In this paper, the issues related to irradiation temperature control and dose rate effects are pointed out and analyzed, and proposals regarding future irradiation tests are given.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1106)

Pages:

95-101

Citation:

Online since:

December 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ishino, T. Kondo, M. Okada, Journal of Nuclear Materials 179-181 (1991) 3-8.

Google Scholar

[2] T. Muroga, Y. Hatano, D. Clark, Y. Katoh, Journal of Nuclear Materials 560 (2022) 153494.

Google Scholar

[3] M. Kiritani et al., Journal of Nuclear Materials 174 (1990) 327-351.

Google Scholar

[4] N. Yoshida et al., Journal of Nuclear Materials 179-181 (1991) 1078-1082.

Google Scholar

[5] H. Watanabe, T. Muroga, N. Yoshida, Journal of Nuclear Materials 217 (1994) 178-186.

Google Scholar

[6] A.L. Qualls, T. Muroga, Journal of Nuclear Materials 258-263 (1998) 407-412.

Google Scholar

[7] H. Watanabe, T. Muroga, N. Yoshida, Journal of Nuclear Materials 307-311 (2002) 403-407.

Google Scholar

[8] B.A. Loomis, S.B. Gerber, A. Taylor, Journal of Nuclear Materials 68 (1977) 19-31.

Google Scholar

[9] H.L. Heinisch, B.N. Singh, Journal of Nuclear Materials 307-311 (2002) 876-880.

Google Scholar

[10] T. Muroga et al., Fusion Science and Technology 44 (2003) 450-454.

Google Scholar

[11] T. Muroga, Y. Nonaka, N. Yoshida, Journal of Nuclear Materials 233-237 (1996) 1035-1039.

Google Scholar

[12] B.L. Eyre, R. Bullough, Philosophical Magazine 12 (1965) 31-39.

Google Scholar

[13] Z. Yao et.al., Philosophical Magazine 90 (2010) 4623-4634.

Google Scholar

[14] Y. Dai et al. Journal of Nuclear Materials 15 (2011) 306-310.

Google Scholar

[15] Y. Dai, G.S. Bauer, Journal of Nuclear Materials 296 (2001) 43-53.

Google Scholar

[16] e.g., G.S. Was, Fundamentals of Radiation Materials Science, Springer (2007) Chapter 11.

Google Scholar

[17] T. Okita et al., Journal of Nuclear Materials 307-311 (2002) 322-326.

Google Scholar

[18] N.H. Packan, K. Farrell, J.O. Stiegler, Journal of Nuclear Materials 78 (1978) 143-155.

Google Scholar

[19] T. Muroga, H. Watanabe, N. Yoshida, Journal of Nuclear Materials 174 (1990) 282-288.

Google Scholar

[20] T. Muroga et al., Plasma and Fusion Research 11 (2016) 2405007.

Google Scholar

[21] S. Yanagita et al., Materials Transactions 43 (2002) 1663-1669.

Google Scholar

[22] T. Muroga, H. Tanigawa, Fusion Science and Technology 72 (2017) 389-397.

Google Scholar

[23] M. Narui, T. Sagawa, T. Shikama, Journal of Nuclear Materials 258-263 (1998) 372-377.

Google Scholar

[24] B. Rossaert et al., Journal of Nuclear Materials 565 (2022) 153742.

Google Scholar

[25] T. Muroga, S. Fukada, T. Hayashi, Fusion Science and Technology 75 (2019) 559-574.

Google Scholar

[26] A. Ibarra et al., Nuclear Fusion 59 (2019) 065002.

Google Scholar

[27] K. Ochiai et al., Nuclear Fusion 61 (2021) 025001.

Google Scholar

[28] T. Muroga, A. Möslang, E. Diegele, Journal of Nuclear Materials 535 (2020) 152186.

Google Scholar