Magnetic Semiconductors from Ferromagnetic Amorphous Alloys

Article Preview

Abstract:

Utilizing both charge and spin degrees of freedom of electrons simultaneously in magnetic semiconductors promises new device concepts by creating an opportunity to realize data processing, transportation and storage in one single spintronic device. Unlike most of the traditional diluted magnetic semiconductors, which obtain intrinsic ferromagnetism by adding magnetic elements to non-magnetic semiconductors, we attempt to develop room temperature magnetic semiconductors via a metal-semiconductor transition by introducing oxygen into three different ferromagnetic amorphous alloy systems. These magnetic semiconductors show different conduction types determined primarily by the compositions of the selected amorphous ferromagnetic alloy systems. These findings may pave a new way to realize magnetic semiconductor-based spintronic devices that work at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1107)

Pages:

111-116

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Duwez, S.C.H. Lin, Amorphous ferromagnetic phase in iron-carbon-phosphorous alloys, J. Appl. Phys. 38 (1967) 4096-4097.

DOI: 10.1063/1.1709084

Google Scholar

[2] A. Inoue, A. Makino, T. Mizushima, Ferromagnetic bulk glassy alloys, J. Magn. Magn. Mater. 215-216 (2000) 246-252.

DOI: 10.1016/s0304-8853(00)00127-x

Google Scholar

[3] X.S. Li, J. Zhou, L.Q. Shen, B.A. Sun, H.Y. Bai, W.H. Wang, Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous-nanocrystalline transitional microstructure in an FeCo-based alloy, Adv. Mater. 34 (2022) 2205863.

DOI: 10.1002/adma.202205863

Google Scholar

[4] H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications, Prog. Mater. Sci. 103 (2019) 235-318.

DOI: 10.1016/j.pmatsci.2019.01.003

Google Scholar

[5] A. Inoue, T. Zhang, H. Koshiba, A. Makino, , A. Makino, T. Masumoto, High saturation magnetization and soft magnetic-properties of bcc Fe-Zr-B alloys with ultrafine grain-structure, New bulk amorphous Fe-(Co,Ni)-M-B (M=Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties, J. Appl. Phys. 83 (1998) 6326-6328.

DOI: 10.1063/1.367811

Google Scholar

[6] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction, Nat. Mater. 9 (2010) 721-724.

DOI: 10.1038/nmat2804

Google Scholar

[7] F. Magnus, M.E. Brooks-Bartlett, R. Moubah, R.A. Procter, G. Andersson, T.P.A. Hase, S.T. Banks, B. Hjorvarsson, Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet, Nat. Commun. 7 (2016) 11931.

DOI: 10.1038/ncomms11931

Google Scholar

[8] W.J. Liu, H.X. Zhang, J.A. Shi, Z.C. Wang, C. Song, X.R. Wang, S.Y. Lu, X.J. Zhou, L. Gu, D.V. Louzguine-Luzgin, M.W. Chen, K.F. Yao, N. Chen, A room-temperature magnetic semiconductor from a ferromagnetic metallic glass, Nat. Commun. 7, 13497 (2016).

DOI: 10.1038/ncomms13497

Google Scholar

[9] N. Chen, K.X. Fang, H.X. Zhang, Y.Q. Zhang, W.J. Liu, K.F. Yao, Z.J. Zhang, Amorphous magnetic semiconductors with Curie temperatures above room temperature, J. Semicond. 40, 081510 (2019).

DOI: 10.1088/1674-4926/40/8/081510

Google Scholar

[10] Y.Z. Jiao, D.V. Louzguine-Luzgin, K.F. Yao, Z.J. Zhang, N. Chen, A room-temperature magnetic semiconductor from a Co-Fe-Nb-B metallic glass, Sci. China Phys. Mech. Astro. 66 (2023) 246111.

DOI: 10.1007/s11433-022-2042-x

Google Scholar

[11] H. Ohno, Making nonmagnetic semiconductors magnetic, Science 281 (1998) 951-956.

Google Scholar

[12] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Otani, Electric-field control of ferromagnetism, Nature 408 (2000) 944–946.

DOI: 10.1038/35050040

Google Scholar

[13] K. Ando, Seeking room-temperature ferromagnetic semiconductors, Science 312 (2006) 1883-1885.

DOI: 10.1126/science.1125461

Google Scholar

[14] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019-1022.

DOI: 10.1126/science.287.5455.1019

Google Scholar

[15] A.H. MacDonald, P. Schiffer, N. Samarth, Ferromagnetic semiconductors: moving beyond (Ga, Mn)As, Nat. Mater. 4 (2005) 195-202.

DOI: 10.1038/nmat1325

Google Scholar

[16] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (2001) 854-856.

DOI: 10.1126/science.1056186

Google Scholar

[17] H.M. Wang, S. Sun, J.T. Lu, J.Y. Xu, X.W. Lv, Y. Peng, X. Zhang, Y. Wang, G. Xiang, High Curie temperature ferromagnetism and high hole mobility in tensile strained Mn-Doped SiGe thin films, Adv. Funct. Mater. 30 (2020) 2002513.

DOI: 10.1002/adfm.202002513

Google Scholar

[18] L. Chen, X. Yang, F.H. Yang, J.H. Zhao, J. Misuraca, P. Xiong, S. von Molnar, Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering, Nano Lett. 11 (2011) 2584–2589.

DOI: 10.1021/nl201187m

Google Scholar

[19] Y.Q. Zhang, S.F. Zhao, C. Song, W.J. Liu, K.F. Yao, N. Chen, Electric-field control of ferromagnetism in a Co-Fe-Ta-B amorphous alloy, Mater. Design 143 (2018) 65-71.

DOI: 10.1016/j.matdes.2018.01.046

Google Scholar

[20] S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p-n heterojunction diodes, Adv. Mater. 15 (2003) 1409-1413.

DOI: 10.1002/adma.200304947

Google Scholar

[21] W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, Elsevier, Butterworth-Heinemann, Burlington, 2004, pp.259-261.

Google Scholar

[22] A.J. Gubanov, Quasi-classical theory of amorphous ferromagnetics, Soviet Phys.-Solid State 2 (1960) 468-471.

Google Scholar

[23] K.A. Stewart, V. Gouliouk, D.A. Keszler, J.F. Wager, Sputtered boron indium oxide thin-film transistors, Solid State Electron. 137 (2017) 80-84.

DOI: 10.1016/j.sse.2017.08.004

Google Scholar

[24] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 18 (2000) 1785-1791.

DOI: 10.1116/1.591472

Google Scholar

[25] T. Onozato, T. Katase, A. Yamamoto, S. Katayama, K. Matsushima, N. Itagaki, H. Yoshida, H. Ohta, Optoelectronic properties of valence-state controlled amorphous niobium oxide, J. Phys: Condens. Matter. 28 (2016) 255001.

DOI: 10.1088/0953-8984/28/25/255001

Google Scholar

[26] D. Music, Y.−T. Chen, P. Bliem, R.W. Geyer, Amorphous – crystalline transition in thermoelectric NbO2, J. Phys. D: Appl. Phys. 48 (2015) 275301.

DOI: 10.1088/0022-3727/48/27/275301

Google Scholar