[1]
Singh, A.K., and Umesh T. Nakate. "Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia." The Scientific World Journal 2014 (2014).
DOI: 10.1155/2014/349457
Google Scholar
[2]
Polisetti, Sneha, Parag A. Deshpande, and Giridhar Madras. "Photocatalytic activity of combustion synthesized ZrO2 and ZrO2–TiO2 mixed oxides." Industrial & engineering chemistry research 50, no. 23 (2011): 12915-12924.
DOI: 10.1021/ie200350f
Google Scholar
[3]
Garvie, Ronald C., R. H. Hannink, and R. T. Pascoe. "Ceramic steel?" Nature 258.5537 (1975): 703-704.
DOI: 10.1038/258703a0
Google Scholar
[4]
Wilk, Glen D., Robert M. Wallace, and JáM Anthony. "High-κ gate dielectrics: Current status and materials properties considerations." Journal of applied physics 89.10 (2001): 5243-5275.
DOI: 10.1063/1.1361065
Google Scholar
[5]
Zhang, Qinyuan, et al. "Sol–gel derived ZrO2–SiO2 highly reflective coatings." International Journal of Inorganic Materials 2.4 (2000): 319-323.
DOI: 10.1016/s1466-6049(00)00037-4
Google Scholar
[6]
Breen, John P., and Julian RH Ross. "Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts." Catalysis Today 51.3-4(1999):521-533.
DOI: 10.1016/s0920-5861(99)00038-3
Google Scholar
[7]
Nguyen, T., and E. Djurado. "Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition." Solid State Ionics 138.3-4 (2001): 191-197.
DOI: 10.1016/s0167-2738(00)00795-5
Google Scholar
[8]
Zhou, X., I. Balachov, and D. D. Macdonald. "The effect of dielectric coatings on IGSCC in sensitized type 304 SS in high-temperature dilute sodium sulfate solution." Corrosion Science 40.8 (1998): 1349-1362.
DOI: 10.1016/s0010-938x(98)00018-3
Google Scholar
[9]
Wright, P. K., and Anthony G. Evans. "Mechanisms governing the performance of thermal barrier coatings." Current opinion in solid state and Materials Science 4.3 (1999): 255-265.
DOI: 10.1016/s1359-0286(99)00024-8
Google Scholar
[10]
Tai, Clifford Y., Bor-Yuan Hsiao, and Hsien-Yi Chiu. "Preparation of spherical hydrous-zirconia nanoparticles by low-temperature hydrolysis in a reverse microemulsion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 237.1-3 (2004): 105-111.
DOI: 10.1016/j.colsurfa.2004.02.014
Google Scholar
[11]
Lee, Mei-Hwa, Clifford Y. Tai, and Chung-Hsin Lu. "Synthesis of spherical zirconia by precipitation between two water/oil emulsions." Journal of the European Ceramic Society 19.15 (1999): 2593-2603.
DOI: 10.1016/s0955-2219(99)00044-8
Google Scholar
[12]
Chraska, Tomas, Alexander H. King, and Christopher C. Berndt. "On the size-dependent phase transformation in nanoparticulate zirconia." Materials Science and Engineering: A 286.1 (2000): 169-178.
DOI: 10.1016/s0921-5093(00)00625-0
Google Scholar
[13]
Luo, T. Y., T. X. Liang, and C. S. Li. "Stabilization of cubic zirconia by carbon nanotubes." Materials Science and Engineering: A 366.1 (2004): 206-209.
DOI: 10.1016/j.msea.2003.09.053
Google Scholar
[14]
Ray, J. C., C. R. Saha, and P. Pramanik. "Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: preparation from a polymer precursor and the study of the thermal and structural properties." Journal of the European Ceramic Society 22.6 (2002): 851-862.
DOI: 10.1016/s0955-2219(01)00404-6
Google Scholar
[15]
Peshev, P., et al. "Spray pyrolysis deposition of nanostructured zirconia thin films." Materials Science and Engineering: B 97.1 (2003): 106-110.
DOI: 10.1016/s0921-5107(02)00394-x
Google Scholar
[16]
Sekulić, A., K. Furić, and M. Stubičar. "Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam." Journal of molecular structure 410 (1997): 275-279.
DOI: 10.1016/s0022-2860(96)09568-3
Google Scholar
[17]
Macwan, D. P., Pragnesh N. Dave, and Shalini Chaturvedi. "A review on nano-TiO2 sol–gel type syntheses and its applications." Journal of materials science 46 (2011): 3669-3686.
DOI: 10.1007/s10853-011-5378-y
Google Scholar
[18]
Mousavi-Kamazani, M., M. Salavati-Niasari, and H. Emadi. "Preparation of stochiometric CuInS2 nanostructures by ultrasonic method." Micro & Nano Letters 7.9 (2012): 896-900.
DOI: 10.1049/mnl.2012.0393
Google Scholar
[19]
Mousavi-Kamazani, Mehdi, Masoud Salavati-Niasari, and Hamid Emadi. "Synthesis and characterization of CuInS2 nanostructure by ultrasonic-assisted method and different precursors." Materials Research Bulletin 47.12 (2012): 3983-3990.
DOI: 10.1016/j.materresbull.2012.08.044
Google Scholar
[20]
Mousavi-Kamazani, Mehdi, and Masoud Salavati-Niasari. "A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites." Composites Part B: Engineering 56 (2014): 490-496.
DOI: 10.1016/j.compositesb.2013.08.066
Google Scholar
[21]
Bera, Parthasarathi, et al. "Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation." The Journal of Physical Chemistry B 107.25 (2003): 6122-6130.
DOI: 10.1021/jp022132f
Google Scholar
[22]
Jacobs, Gary, et al. "Low-temperature water-gas shift: in-situ DRIFTS− reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications." The Journal of Physical Chemistry B 107.38 (2003): 10398-10404.
DOI: 10.1021/jp0302055
Google Scholar
[23]
Sohlberg, Karl, Sokrates T. Pantelides, and Stephen J. Pennycook. "Interactions of hydrogen with CeO2" Journal of the American Chemical Society 123.27 (2001): 6609-6611.
DOI: 10.1021/ja004008k
Google Scholar
[24]
Jasinski, Piotr, Toshio Suzuki, and Harlan U. Anderson. "Nanocrystalline undoped ceria oxygen sensor." Sensors and Actuators B: Chemical 95.1-3 (2003): 73-77.
DOI: 10.1016/s0925-4005(03)00407-6
Google Scholar
[25]
Goubin, Fabrice, et al. "Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions." Chemistry of materials 16.4 (2004): 662-669.
Google Scholar
[26]
Shchukin, Dmitry G., and Rachel A. Caruso. "Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration." Chemistry of Materials 16.11 (2004): 2287-2292.
DOI: 10.1021/cm0497780
Google Scholar
[27]
Caldararu, Monica, et al. "Redox processes in Sb-containing mixed oxides used in oxidation catalysis: I. Tin dioxide assisted antimony oxidation in the solid state." Applied Catalysis A: General 209.1-2 (2001): 383-390.
DOI: 10.1016/s0926-860x(00)00776-6
Google Scholar
[28]
A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, L. Giorno, Basic aspects in inorganic membrane preparation, in Comprehensive Membrane Science and Engineering. ed. by Enrico, G. Lidietta (Elsevier, Oxford, 2010), p.217–252.
DOI: 10.1016/b978-0-08-093250-7.00011-6
Google Scholar
[29]
S. Ivanov, Multiferroic complex metal oxides: main features of preparation, structure, and properties, in Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems. (Elsevier, Amsterdam, 2012), p.163–238.
DOI: 10.1016/b978-0-44-453681-5.00007-8
Google Scholar
[30]
Mangla, Onkar, and Savita Roy. "Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions." Multidisciplinary Digital Publishing Institute Proceedings 3.1 (2018): 10.
DOI: 10.3390/iocn_2018-1-05486
Google Scholar
[31]
Prabaharan, Devadoss Mangalam Durai Manoharadoss, et al. "Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles." Materials Research 19 (2016): 478-482.
DOI: 10.1590/1980-5373-mr-2015-0698
Google Scholar
[32]
Deshmane, Vishwanath G., and Yusuf G. Adewuyi. "Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters." Microporous and mesoporous materials 148.1 (2012): 88-100.
DOI: 10.1016/j.micromeso.2011.07.012
Google Scholar
[33]
Yu, Jimmy C., et al. "Synthesis and characterization of phosphate mesoporous titanium dioxide with high photocatalytic activity." Chemistry of Materials 15.11 (2003): 2280-2286.
DOI: 10.1021/cm0340781
Google Scholar
[34]
Mai, Manfang, et al. "Preparation and characterization of lead zirconate titanate ceramic fibres with the alkoxide-based sol-gel route." Journal of Physics: Conference Series. Vol. 152. No. 1. IOP Publishing, 2009.
DOI: 10.1088/1742-6596/152/1/012077
Google Scholar
[35]
Bhargavi, G. Nag, et al. "Influence of Eu doping on the structural, electrical and optical behaviour of barium zirconium titanate ceramic." Ceramics International 44.2 (2018): 1817-1825.
DOI: 10.1016/j.ceramint.2017.10.116
Google Scholar
[36]
Sagadevan, Suresh, Jiban Podder, and Isha Das. "Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization." Journal of Materials Science: Materials in Electronics 27 (2016): 5622-5627.
DOI: 10.1007/s10854-016-4469-6
Google Scholar
[37]
Bhargavi, G. Nag, et al. "Influence of Eu doping on the structural, electrical and optical behaviour of barium zirconium titanate ceramic." Ceramics International 44.2 (2018): 1817-1825.
DOI: 10.1016/j.ceramint.2017.10.116
Google Scholar
[38]
King, Abhishek, et al. "Spectroscopic studies of borohydride-derived cerium-doped zirconia nanoparticles under air and argon annealing conditions." Journal of Nanoparticle Research 23.8 (2021): 156.
DOI: 10.1007/s11051-021-05299-x
Google Scholar
[39]
Nagasravanthi M, Sudagar J, Synthesis, Structural, Optical, and Dielectric properties of Zirconium-Titanate Ceramic composite by Solid-state reaction, Accepted in Journal of Materials Engineering and Performance.
DOI: 10.1007/s11665-023-08827-z
Google Scholar
[40]
Chandran, Anoop, and K. C. George. "Defect-induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods." Journal of nanoparticle research 16.3 (2014): 2238.
DOI: 10.1007/s11051-013-2238-5
Google Scholar
[41]
Rahaman, Md D., et al. "Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0. 6Zn0. 4Fe2O4." Journal of Magnetism and Magnetic Materials 404 (2016): 238-249.
DOI: 10.1016/j.jmmm.2015.12.029
Google Scholar
[42]
Dar, M. Abdullah, et al. "Dielectric and impedance study of polycrystalline Li0. 35− 0.5 XCd0. 3NiXFe2. 35− 0.5 XO4 ferrites synthesized via a citrate-gel auto combustion method." Journal of Alloys and Compounds 632 (2015): 307-320.
DOI: 10.1016/j.jallcom.2015.01.190
Google Scholar
[43]
Koops, C. G. "On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies." Physical Review 83.1 (1951): 121.
DOI: 10.1103/physrev.83.121
Google Scholar
[44]
Argall, F., and A. K. Jonscher. "Dielectric properties of thin films of aluminium oxide and silicon oxide." thin solid films 2.3 (1968): 185-210.
DOI: 10.1016/0040-6090(68)90002-3
Google Scholar
[45]
Mannu, Pandian, et al. "Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In-Te-Se nanocomposite thin films." Applied Physics A 125 (2019): 1-13.
DOI: 10.1007/s00339-019-2751-1
Google Scholar
[46]
Şafak-Asar, Yasemin, et al. "Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs (110) Schottky barrier diodes." Journal of Alloys and Compounds 628 (2015): 442-449.
DOI: 10.1016/j.jallcom.2014.12.170
Google Scholar
[47]
Debnath, Tanumoy, et al. "Hydrothermal process assists undoped and Cr-doped semiconducting ZnO nanorods: frontier of dielectric property." Journal of Applied Physics 123.19 (2018): 194101.
DOI: 10.1063/1.5017792
Google Scholar