Effect of CeO2 Doped Zirconium Titanate with Various Temperatures by Solid-State Reaction Method

Article Preview

Abstract:

The synthesis of ceramic composites consisting of cerium and titanium-doped zirconium (ZCT) oxide was achieved by the solid-state reaction technique. The ZCT composite ceramic powder undergoes sintering at various temperatures, including room temperature (RT), 1000°C, 1100°C, 1200°C, and 1300°C. Extensive study has been conducted on ceria-based materials in the field of catalysis, owing to their vast array of uses. Nevertheless, there was a limited amount of research conducted on the impact of ceria in the solid-state reaction approach. The current study employed a solid-state reaction method to fabricate ceramic composites comprising ZrO2, CeO2, and TiO2. Various sintering temperatures were employed in the process. This study aimed to evaluate the impact of the sintering effect of ZCT ceramic oxides on several aspects, including crystal structure, surface morphology, optical properties, and electrical properties. The ZCT ceramic oxide underwent sintering at room temperature (RT), 1000°C, and 1100°C, resulting in the formation of a monoclinic crystal structure. However, sintering at 1200°C and 1300°C led to the presence of mixed phases, characterized by both monoclinic and tetragonal crystal structures, as observed through X-ray diffraction (XRD) analysis. When the sintering temperature is increased from 1000 to 1300°C, there is a modest drop in the band gap of a ZCT material from 3.43eV to 3.25eV. frequency(1mHZ-200kHz) dependence of dielectric constant, dielectric loss and ac electrical conductivity of the synthesized composites were carried out. The results indicate that dielectric constant and loss decreases with frequency rises and reaches a constant value at higher frequencies. The electrical conductivity of all ZCT samples exhibits an increase as the frequency is raised, whereas it reaches a minimum at lower frequencies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1107)

Pages:

93-104

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Singh, A.K., and Umesh T. Nakate. "Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia." The Scientific World Journal 2014 (2014).

DOI: 10.1155/2014/349457

Google Scholar

[2] Polisetti, Sneha, Parag A. Deshpande, and Giridhar Madras. "Photocatalytic activity of combustion synthesized ZrO2 and ZrO2–TiO2 mixed oxides." Industrial & engineering chemistry research 50, no. 23 (2011): 12915-12924.

DOI: 10.1021/ie200350f

Google Scholar

[3] Garvie, Ronald C., R. H. Hannink, and R. T. Pascoe. "Ceramic steel?" Nature 258.5537 (1975): 703-704.

DOI: 10.1038/258703a0

Google Scholar

[4] Wilk, Glen D., Robert M. Wallace, and JáM Anthony. "High-κ gate dielectrics: Current status and materials properties considerations." Journal of applied physics 89.10 (2001): 5243-5275.

DOI: 10.1063/1.1361065

Google Scholar

[5] Zhang, Qinyuan, et al. "Sol–gel derived ZrO2–SiO2 highly reflective coatings." International Journal of Inorganic Materials 2.4 (2000): 319-323.

DOI: 10.1016/s1466-6049(00)00037-4

Google Scholar

[6] Breen, John P., and Julian RH Ross. "Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts." Catalysis Today 51.3-4(1999):521-533.

DOI: 10.1016/s0920-5861(99)00038-3

Google Scholar

[7] Nguyen, T., and E. Djurado. "Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition." Solid State Ionics 138.3-4 (2001): 191-197.

DOI: 10.1016/s0167-2738(00)00795-5

Google Scholar

[8] Zhou, X., I. Balachov, and D. D. Macdonald. "The effect of dielectric coatings on IGSCC in sensitized type 304 SS in high-temperature dilute sodium sulfate solution." Corrosion Science 40.8 (1998): 1349-1362.

DOI: 10.1016/s0010-938x(98)00018-3

Google Scholar

[9] Wright, P. K., and Anthony G. Evans. "Mechanisms governing the performance of thermal barrier coatings." Current opinion in solid state and Materials Science 4.3 (1999): 255-265.

DOI: 10.1016/s1359-0286(99)00024-8

Google Scholar

[10] Tai, Clifford Y., Bor-Yuan Hsiao, and Hsien-Yi Chiu. "Preparation of spherical hydrous-zirconia nanoparticles by low-temperature hydrolysis in a reverse microemulsion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 237.1-3 (2004): 105-111.

DOI: 10.1016/j.colsurfa.2004.02.014

Google Scholar

[11] Lee, Mei-Hwa, Clifford Y. Tai, and Chung-Hsin Lu. "Synthesis of spherical zirconia by precipitation between two water/oil emulsions." Journal of the European Ceramic Society 19.15 (1999): 2593-2603.

DOI: 10.1016/s0955-2219(99)00044-8

Google Scholar

[12] Chraska, Tomas, Alexander H. King, and Christopher C. Berndt. "On the size-dependent phase transformation in nanoparticulate zirconia." Materials Science and Engineering: A 286.1 (2000): 169-178.

DOI: 10.1016/s0921-5093(00)00625-0

Google Scholar

[13] Luo, T. Y., T. X. Liang, and C. S. Li. "Stabilization of cubic zirconia by carbon nanotubes." Materials Science and Engineering: A 366.1 (2004): 206-209.

DOI: 10.1016/j.msea.2003.09.053

Google Scholar

[14] Ray, J. C., C. R. Saha, and P. Pramanik. "Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: preparation from a polymer precursor and the study of the thermal and structural properties." Journal of the European Ceramic Society 22.6 (2002): 851-862.

DOI: 10.1016/s0955-2219(01)00404-6

Google Scholar

[15] Peshev, P., et al. "Spray pyrolysis deposition of nanostructured zirconia thin films." Materials Science and Engineering: B 97.1 (2003): 106-110.

DOI: 10.1016/s0921-5107(02)00394-x

Google Scholar

[16] Sekulić, A., K. Furić, and M. Stubičar. "Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam." Journal of molecular structure 410 (1997): 275-279.

DOI: 10.1016/s0022-2860(96)09568-3

Google Scholar

[17] Macwan, D. P., Pragnesh N. Dave, and Shalini Chaturvedi. "A review on nano-TiO2 sol–gel type syntheses and its applications." Journal of materials science 46 (2011): 3669-3686.

DOI: 10.1007/s10853-011-5378-y

Google Scholar

[18] Mousavi-Kamazani, M., M. Salavati-Niasari, and H. Emadi. "Preparation of stochiometric CuInS2 nanostructures by ultrasonic method." Micro & Nano Letters 7.9 (2012): 896-900.

DOI: 10.1049/mnl.2012.0393

Google Scholar

[19] Mousavi-Kamazani, Mehdi, Masoud Salavati-Niasari, and Hamid Emadi. "Synthesis and characterization of CuInS2 nanostructure by ultrasonic-assisted method and different precursors." Materials Research Bulletin 47.12 (2012): 3983-3990.

DOI: 10.1016/j.materresbull.2012.08.044

Google Scholar

[20] Mousavi-Kamazani, Mehdi, and Masoud Salavati-Niasari. "A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites." Composites Part B: Engineering 56 (2014): 490-496.

DOI: 10.1016/j.compositesb.2013.08.066

Google Scholar

[21] Bera, Parthasarathi, et al. "Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation." The Journal of Physical Chemistry B 107.25 (2003): 6122-6130.

DOI: 10.1021/jp022132f

Google Scholar

[22] Jacobs, Gary, et al. "Low-temperature water-gas shift: in-situ DRIFTS− reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications." The Journal of Physical Chemistry B 107.38 (2003): 10398-10404.

DOI: 10.1021/jp0302055

Google Scholar

[23] Sohlberg, Karl, Sokrates T. Pantelides, and Stephen J. Pennycook. "Interactions of hydrogen with CeO2" Journal of the American Chemical Society 123.27 (2001): 6609-6611.

DOI: 10.1021/ja004008k

Google Scholar

[24] Jasinski, Piotr, Toshio Suzuki, and Harlan U. Anderson. "Nanocrystalline undoped ceria oxygen sensor." Sensors and Actuators B: Chemical 95.1-3 (2003): 73-77.

DOI: 10.1016/s0925-4005(03)00407-6

Google Scholar

[25] Goubin, Fabrice, et al. "Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions." Chemistry of materials 16.4 (2004): 662-669.

Google Scholar

[26] Shchukin, Dmitry G., and Rachel A. Caruso. "Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration." Chemistry of Materials 16.11 (2004): 2287-2292.

DOI: 10.1021/cm0497780

Google Scholar

[27] Caldararu, Monica, et al. "Redox processes in Sb-containing mixed oxides used in oxidation catalysis: I. Tin dioxide assisted antimony oxidation in the solid state." Applied Catalysis A: General 209.1-2 (2001): 383-390.

DOI: 10.1016/s0926-860x(00)00776-6

Google Scholar

[28] A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, L. Giorno, Basic aspects in inorganic membrane preparation, in Comprehensive Membrane Science and Engineering. ed. by Enrico, G. Lidietta (Elsevier, Oxford, 2010), p.217–252.

DOI: 10.1016/b978-0-08-093250-7.00011-6

Google Scholar

[29] S. Ivanov, Multiferroic complex metal oxides: main features of preparation, structure, and properties, in Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems. (Elsevier, Amsterdam, 2012), p.163–238.

DOI: 10.1016/b978-0-44-453681-5.00007-8

Google Scholar

[30] Mangla, Onkar, and Savita Roy. "Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions." Multidisciplinary Digital Publishing Institute Proceedings 3.1 (2018): 10.

DOI: 10.3390/iocn_2018-1-05486

Google Scholar

[31] Prabaharan, Devadoss Mangalam Durai Manoharadoss, et al. "Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles." Materials Research 19 (2016): 478-482.

DOI: 10.1590/1980-5373-mr-2015-0698

Google Scholar

[32] Deshmane, Vishwanath G., and Yusuf G. Adewuyi. "Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters." Microporous and mesoporous materials 148.1 (2012): 88-100.

DOI: 10.1016/j.micromeso.2011.07.012

Google Scholar

[33] Yu, Jimmy C., et al. "Synthesis and characterization of phosphate mesoporous titanium dioxide with high photocatalytic activity." Chemistry of Materials 15.11 (2003): 2280-2286.

DOI: 10.1021/cm0340781

Google Scholar

[34] Mai, Manfang, et al. "Preparation and characterization of lead zirconate titanate ceramic fibres with the alkoxide-based sol-gel route." Journal of Physics: Conference Series. Vol. 152. No. 1. IOP Publishing, 2009.

DOI: 10.1088/1742-6596/152/1/012077

Google Scholar

[35] Bhargavi, G. Nag, et al. "Influence of Eu doping on the structural, electrical and optical behaviour of barium zirconium titanate ceramic." Ceramics International 44.2 (2018): 1817-1825.

DOI: 10.1016/j.ceramint.2017.10.116

Google Scholar

[36] Sagadevan, Suresh, Jiban Podder, and Isha Das. "Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization." Journal of Materials Science: Materials in Electronics 27 (2016): 5622-5627.

DOI: 10.1007/s10854-016-4469-6

Google Scholar

[37] Bhargavi, G. Nag, et al. "Influence of Eu doping on the structural, electrical and optical behaviour of barium zirconium titanate ceramic." Ceramics International 44.2 (2018): 1817-1825.

DOI: 10.1016/j.ceramint.2017.10.116

Google Scholar

[38] King, Abhishek, et al. "Spectroscopic studies of borohydride-derived cerium-doped zirconia nanoparticles under air and argon annealing conditions." Journal of Nanoparticle Research 23.8 (2021): 156.

DOI: 10.1007/s11051-021-05299-x

Google Scholar

[39] Nagasravanthi M, Sudagar J, Synthesis, Structural, Optical, and Dielectric properties of Zirconium-Titanate Ceramic composite by Solid-state reaction, Accepted in Journal of Materials Engineering and Performance.

DOI: 10.1007/s11665-023-08827-z

Google Scholar

[40] Chandran, Anoop, and K. C. George. "Defect-induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods." Journal of nanoparticle research 16.3 (2014): 2238.

DOI: 10.1007/s11051-013-2238-5

Google Scholar

[41] Rahaman, Md D., et al. "Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0. 6Zn0. 4Fe2O4." Journal of Magnetism and Magnetic Materials 404 (2016): 238-249.

DOI: 10.1016/j.jmmm.2015.12.029

Google Scholar

[42] Dar, M. Abdullah, et al. "Dielectric and impedance study of polycrystalline Li0. 35− 0.5 XCd0. 3NiXFe2. 35− 0.5 XO4 ferrites synthesized via a citrate-gel auto combustion method." Journal of Alloys and Compounds 632 (2015): 307-320.

DOI: 10.1016/j.jallcom.2015.01.190

Google Scholar

[43] Koops, C. G. "On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies." Physical Review 83.1 (1951): 121.

DOI: 10.1103/physrev.83.121

Google Scholar

[44] Argall, F., and A. K. Jonscher. "Dielectric properties of thin films of aluminium oxide and silicon oxide." thin solid films 2.3 (1968): 185-210.

DOI: 10.1016/0040-6090(68)90002-3

Google Scholar

[45] Mannu, Pandian, et al. "Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In-Te-Se nanocomposite thin films." Applied Physics A 125 (2019): 1-13.

DOI: 10.1007/s00339-019-2751-1

Google Scholar

[46] Şafak-Asar, Yasemin, et al. "Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs (110) Schottky barrier diodes." Journal of Alloys and Compounds 628 (2015): 442-449.

DOI: 10.1016/j.jallcom.2014.12.170

Google Scholar

[47] Debnath, Tanumoy, et al. "Hydrothermal process assists undoped and Cr-doped semiconducting ZnO nanorods: frontier of dielectric property." Journal of Applied Physics 123.19 (2018): 194101.

DOI: 10.1063/1.5017792

Google Scholar