[1]
Xie, Z., et al., Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying. Diamond and Related Materials, 2021. 114: p.108309.
DOI: 10.1016/j.diamond.2021.108309
Google Scholar
[2]
Sun, A., et al., Effects of Ag addition on electrical and thermal properties of Mo–Cu composites. Journal of Alloys and Compounds, 2016. 657: pp.8-11.
DOI: 10.1016/j.jallcom.2015.10.098
Google Scholar
[3]
Huang, L.-M., et al., Effects of simplified pretreatment process on the morphology of W–Cu composite powder prepared by electroless plating and its sintering characterization. Powder Technology, 2014. 258: pp.216-221.
DOI: 10.1016/j.powtec.2014.03.027
Google Scholar
[4]
Molina, J.M., et al., The effect of porosity on the thermal conductivity of Al–12wt.% Si/SiC composites. Scripta Materialia, 2009. 60(7): pp.582-585.
DOI: 10.1016/j.scriptamat.2008.12.015
Google Scholar
[5]
Wang, B., et al., A novel ultrasonic consolidation method for rapid preparation of diamond/Cu composites. Materials Letters, 2022. 323: p.132498.
DOI: 10.1016/j.matlet.2022.132498
Google Scholar
[6]
Li, J., et al., Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. Journal of Alloys and Compounds, 2015. 647: pp.941-946.
DOI: 10.1016/j.jallcom.2015.06.062
Google Scholar
[7]
Han, J., et al., Effects of alloying elements on diamond/Cu interface properties based on first-principles calculations. Journal of Physics: Condensed Matter, 2023. 35(11): p.115001.
DOI: 10.1088/1361-648x/acad54
Google Scholar
[8]
Ma, J.N., L. Bolzoni, and F. Yang, Interface manipulation and its effects on the resultant thermal conductivity of hot-forged copper/Ti-coated diamond composites. Journal of Alloys and Compounds, 2021. 868: p.159182.
DOI: 10.1016/j.jallcom.2021.159182
Google Scholar
[9]
Zhang, Y., et al., Interfacial Thermal Conductance between Cu and Diamond with Interconnected W−W2C Interlayer. ACS Applied Materials & Interfaces, 2022. 14(30): pp.35215-35228.
DOI: 10.1021/acsami.2c07190
Google Scholar
[10]
Jia, S.Q., et al., Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu–Cr/Diamond composites. Carbon, 2021. 172: pp.390-401.
DOI: 10.1016/j.carbon.2020.10.036
Google Scholar
[11]
Li, J., et al., High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Materialia, 2015. 109: pp.72-75.
DOI: 10.1016/j.scriptamat.2015.07.022
Google Scholar
[12]
Bai, G., et al., Mechanical Properties of Cu-B/Diamond Composites Prepared by Gas Pressure Infiltration. Journal of Materials Engineering and Performance, 2020. 29(5): pp.3107-3119.
DOI: 10.1007/s11665-020-04790-1
Google Scholar
[13]
Schubert, T., et al., Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Materialia, 2008. 58(4): pp.263-266.
DOI: 10.1016/j.scriptamat.2007.10.011
Google Scholar
[14]
Zhang, C., et al., Synthesis and thermal conductivity improvement of W-Cu composites modified with WC interfacial layer. Materials & Design, 2017. 127: pp.233-242.
DOI: 10.1016/j.matdes.2017.04.090
Google Scholar
[15]
Zhang, L., et al., Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders. Journal of Alloys and Compounds, 2014. 588: pp.49-52.
DOI: 10.1016/j.jallcom.2013.11.003
Google Scholar
[16]
Jia, S.Q., et al., Interface formation evolution of the hot-forged copper-(Cr)diamond composite and its thermal conductivity. Journal of Alloys and Compounds, 2023. 943: p.169133.
DOI: 10.1016/j.jallcom.2023.169133
Google Scholar
[17]
Liu, P., X. He, and X. Qu, Effect of diamond surface structure on the interfacial reaction and properties of diamond/SiC composites. Diamond and Related Materials, 2022. 129: p.109342.
DOI: 10.1016/j.diamond.2022.109342
Google Scholar