Ultrahigh Electrochemical Performance Co4Sb11.2Sn0.02Te0.78 for Supercapacitor Cathode

Article Preview

Abstract:

Due to the high theoretical specific capacitance, the skutterudite CoSb3 alloy is a promising supercapacitor electrode material. However, the lack of oxidative active sites and intrinsic poor electrical conductivity greatly hinder its application prospects. Here, we constructed a CoSb3 alloy compound co-doped with Sn and Te (Co4Sb11.2Sn0.02Te0.78) by a melting and annealing method. As the electrode material of the supercapacitor, Co4Sb11.2Sn0.02Te0.78 cathode shows an ultrahigh specific capacity of 1357 mAh g-1 (at 1 A g-1). Even when the current density is increased to 20 A g-1, 42% of the initial capacity is maintained. The advantageous performance of the supercapacitor cathode based on Co4Sb11.2Sn0.02Te0.78 is attributed to the more redox active sites and the improved electrical conductivity. Furthermore, this work provides a promising strategy for developing high-performance next-generation supercapacitor electrode materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1108)

Pages:

103-108

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Simon and Y. Gogotsi: Nat. Mater. Vol. 19 (2020), pp.1151-1163.

Google Scholar

[2] S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser and V. Augustyn: Chem. Rev. Vol. 120 (2020), pp.6738-6782.

DOI: 10.1021/acs.chemrev.0c00170

Google Scholar

[3] Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, X. Lu, L. Dai, R. Amal, C. Wang and Z. Han: Energy Environ. Sci. Vol. 14 (2021), pp.1854-1896.

DOI: 10.1039/d0ee03167d

Google Scholar

[4] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung and J. Thomas: Adv. Mater. Vol. 29 (2017), p.1605336.

DOI: 10.1002/adma.201605336

Google Scholar

[5] C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau and B. Dunn: Nat. Rev. Mater. Vol. 5 (2020), pp.5-19.

Google Scholar

[6] Q. Pan, F. Zheng, D. Deng, B. Chen and Y. Wang, ACS Appl. Mater. Interfaces: Vol. 13 (2021), pp.56692-56703.

DOI: 10.1021/acsami.1c19320

Google Scholar

[7] S. Liu, L. Kang, J. Zhang, E. Jung, S. Lee and S.C. Jun: Energy Storage Mater. Vol. 32 (2020), pp.167-177.

Google Scholar

[8] W. Guo, C. Yu, S. Li, X. Song, H. Huang, X. Han, Z. Wang, Z. Liu, J. Yu, X. Tan and J. Qiu: Adv. Mater. Vol. 31 (2019), p.1901241.

Google Scholar

[9] C. Jing, B. Dong and Y. Zhang: Energy Environ. Mater. Vol. 3 (2020), pp.346-379.

Google Scholar

[10] J. Mei, T. Liao, G.A. Ayoko, J. Bell and Z. Sun: Prog. Mater. Sci. Vol. 103 (2019), pp.596-677.

Google Scholar

[11] X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao and L. Chen: Chem. Eng. J. Vol. 387 (2020), p.124081.

Google Scholar

[12] M. Tong, S. Liu, X. Zhang, T. Wu, H. Zhang, G. Wang, Y. Zhang, X. Zhu and H. Zhao: J. Mater. Chem. A Vol. 5 (2017), p.9873.

Google Scholar

[13] S. Liu, Q. Zhao, M. Tong, X. Zhu, G. Wang, W. Cai, H. Zhang and H. Zhao: J. Mater. Chem. A Vol. 4 (2016), p.17080.

Google Scholar

[14] K. Kong, J. Hyun, Y. Kim, W. Kim and D. Kim: J. Power Sources Vol. 437 (2019), p.226927.

Google Scholar

[15] M.G. Park, J.H. Song, J.S. Sohn, C.K. Lee and C.M. Park: J. Mater. Chem. A Vol. 2 (2014), pp.11391-11399

Google Scholar

[16] J. Zhu, T. Sun, J. Chen, W. Shi, X. Zhang, X. Lou, S. Mhaisalkar, H.H. Hng, F. Boey, J. Ma and Q. Yan: Chem. Mater. Vol. 22 (2010), pp.5333-5339.

DOI: 10.1021/cm101663w

Google Scholar

[17] K.P. Annamalai, S. Gokulnath, T. Boobalan and M. Sathish: Compos. B. Eng. Vol. 260 (2023), p.110747.

Google Scholar

[18] K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, and Y. Qian: ACS Energy Lett. Vol. 3 (2018), pp.420-427.

DOI: 10.1021/acsenergylett.7b01249

Google Scholar

[19] T.H. Hong, J.Y. Kee, D. Kwon, S. Park and D. Kim, J.T. Lee: ACS Appl. Energy Mater. Vol. 5 (2022), pp.12583-12591.

Google Scholar

[20] Z. Zheng, X. Shi, D. Ao, W. Liu, Y. Chen, F. Li, S. Chen, X. Tian, X. Li, J. Duan, H. Ma, X. Zhang, G. Liang, P. Fan and Z. Chen: Nano Energy Vol. 81 (2021), p.105683.

DOI: 10.1016/j.nanoen.2020.105683

Google Scholar

[21] J. Zhao, Y. Wang, Y. Qian, H. Jin, X. Tang, Z. Huang, J. Lou, Q. Zhang, Y. Lei and S. Wang: Adv. Funct. Mater. Vol. 33 (2023), p.2210238.

Google Scholar

[22] J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao and J. Qiu: Energy Environ. Sci. Vol. 9 (2016), pp.1299-1307.

Google Scholar

[23] D. Cheng, Y. Yang, J. Xie, C. Fang, G. Zhang and J. Xiong: J. Mater. Chem. A Vol. 3 (2015), pp.14348-14357.

Google Scholar

[24] L. Xu, Y. Xi, W. Li, Z. Hua, J. Peng, J. Hu, J. Zhou, P. Zhang, J. Wang, W. Wang, H. Ding, W. Wang, W. Ji, Y. Yang, X. Xu, L. Chen and X. Li: Nano Energy Vol. 91 (2022), p.106630.

DOI: 10.1016/j.nanoen.2021.106630

Google Scholar

[25] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart and J.L. Dempsey: J. Chem. Educ. Vol. 95 (2018), pp.197-206.

DOI: 10.1021/acs.jchemed.7b00361

Google Scholar

[26] D. Shi, M. Yang, B. Zhang, Z. Ai, H. Hu, Y. Shao, J. Shen, Y. Wu and X. Hao: Adv. Funct. Mater. Vol. 32 (2022), p.210884.

Google Scholar