[1]
E. Pomerantseva and Y. Gogotsi, "Two-dimensional heterostructures for energy storage," Nat. Energy, vol. 2, p.17089, 2017.
DOI: 10.1038/nenergy.2017.89
Google Scholar
[2]
M. Acerce, D. Voiry, and M. Chhowalla, "Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials," Nat. Nanotechnol. vol. 10, p.313–318, 2015.
DOI: 10.1038/nnano.2015.40
Google Scholar
[3]
M. Wang, S. Xu, and J. J. Cha, "Revisiting Intercalation-Induced Phase Transitions in 2D Group VI Transition Metal Dichalcogenides," Adv. Energy Sustainability Res. vol. 2, p.21000272100027, 2021.
DOI: 10.1002/aesr.202100027
Google Scholar
[4]
D. Kong, H. He, Q. Song, B. Wang, W. Lv, Q.-H. Yang, and L. Zhi, "Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries." Energy & Environmental Science, vol. 7, p.3320, 2014.
DOI: 10.1039/c4ee02211d
Google Scholar
[5]
A. L. Eh, M. Lin, M. Cui, G. Cai, and P. S. Lee, "Copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states," J. Mater. Chem. C, vol. 5, pp.6547-6554, 2017.
DOI: 10.1039/c7tc01070b
Google Scholar
[6]
C. Sung, J. Han, J. Song, C. S. Ah, S. M. Cho, and T.-Y. Kim, "Reflective-Type Transparent/Colored Mirror Switchable Device Using Reversible Electrodeposition with Fabry–Perot Interferometer," Adv. Mater. Technol. vol. 5, p.2000367, 2020.
DOI: 10.1002/admt.202000367
Google Scholar
[7]
R. Kimura, A. Tsuboi, K. Nakamura, and N. Kobayashi, "Effects of silver halide complexes on optical and electrochemical properties of silver deposition-based electrochromic device," Solar Energy Materials & Solar Cells vol. 177, p.128–133, 2018.
DOI: 10.1016/j.solmat.2017.01.014
Google Scholar
[8]
J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., vol. 77, pp.3856-3868, 1996.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[9]
G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, vol. 54, pp.11169-11186, 1996.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[10]
P. E. Blöchl, "Projector Augmented-Wave Method," Physical Review B, vol. 50, pp.17953-17979, 1994.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[11]
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu," J. Chem. Phys., vol. 132, p.154104, 2010.
DOI: 10.1063/1.3382344
Google Scholar
[12]
R. Kappera, D. Voiry, S. E. Yalcin, W. Jen, M. Acerce, S. Torrel et al. "Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2," APL MATERIALS vol. 2, p.092516, 2014.
DOI: 10.1063/1.4896077
Google Scholar
[13]
K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, Nanoscale vol. 6, pp.3028-13035, 2014.
Google Scholar
[14]
K. Burns, A. M. Z. Tan, A. Gabriel, L. Shao, R. G. Hennig, and A. Aitkaliyeva, "Controlling neutral and charged excitons in MoS2 with defects," J. Mater. Res. vol. 35, p.949–957, 2020.
DOI: 10.1557/jmr.2019.404
Google Scholar