Optical Characteristics of Copper-Doped-Perovskite Materials

Article Preview

Abstract:

Doping of perovskite solar cells is a regularly used approach to adjust and modify the structures and properties of organic-inorganic hybrid perovskite such as CH3NH3PbI3 material, and subsequently increase the conversion efficiency. In this work, optical absorption is calculated for copper-doped-perovskite material based on the density functional theory analysis for tetragonal crystal structures. We investigated the effect of doping CH3NH3PbI3 with copper, as an optical alternative to Pb atom in central tetragonal structure. As a conclusion, some enhancements of the optical properties by the replacement of Cu by the Pb atom are observed, such as optical absorption at certain visible spectrum regions, along with more intensive field mapping. This optical enhancement can lead to a better improvement of perovskite solar cell according to metallic-doing substitutional defect concept.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1109)

Pages:

33-39

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Doolin et al., "Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI 3) perovskite solar cells," vol. 23, no. 6, pp.2471-2486, 2021.

DOI: 10.1039/d1gc00079a

Google Scholar

[2] P. Čulík et al., "Design and Cost Analysis of 100 MW Perovskite Solar Panel Manufacturing Process in Different Locations," vol. 7, no. 9, pp.3039-3044, 2022.

DOI: 10.1021/acsenergylett.2c01728

Google Scholar

[3] T. Wu et al., "The main progress of perovskite solar cells in 2020–2021," vol. 13, pp.1-18, 2021.

Google Scholar

[4] A. Kojima, K. Teshima, Y. Shirai, and T. J. J. o. t. a. c. s. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," vol. 131, no. 17, pp.6050-6051, 2009.

DOI: 10.1021/ja809598r

Google Scholar

[5] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. J. N. m. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," vol. 13, no. 9, pp.897-903, 2014.

DOI: 10.1038/nmat4014

Google Scholar

[6] M. A. Green, A. Ho-Baillie, and H. J. J. N. p. Snaith, "The emergence of perovskite solar cells," vol. 8, no. 7, pp.506-514, 2014.

DOI: 10.1038/nphoton.2014.134

Google Scholar

[7] K. T. Cho et al., "Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface," vol. 10, no. 2, pp.621-627, 2017.

DOI: 10.1039/c6ee03182j

Google Scholar

[8] L. A. Frolova et al., "Efficient and stable MAPbI3-based perovskite solar cells using polyvinylcarbazole passivation," vol. 11, no. 16, pp.6772-6778, 2020.

Google Scholar

[9] M. Moret, A. Tiberj, W. Desrat, O. J. S. Briot, and Microstructures, "Properties of MAPbI3 perovskite layers grown with HCl additions," vol. 120, pp.136-140, 2018.

DOI: 10.1016/j.spmi.2018.05.033

Google Scholar

[10] J. Cao, F. J. E. Yan, and E. Science, "Recent progress in tin-based perovskite solar cells," vol. 14, no. 3, pp.1286-1325, 2021.

DOI: 10.1039/d0ee04007j

Google Scholar

[11] J. George, A. P. Joseph, and M. J. I. J. o. E. R. Balachandran, "Perovskites: Emergence of highly efficient third‐generation solar cells," vol. 46, no. 15, pp.21856-21883, 2022.

DOI: 10.1002/er.8707

Google Scholar

[12] N. Zibouche, M. S. J. A. a. m. Islam, and interfaces, "Structure–Electronic Property Relationships of 2D Ruddlesden–Popper Tin-and Lead-based Iodide Perovskites," vol. 12, no. 13, pp.15328-15337, 2020.

DOI: 10.1021/acsami.0c03061

Google Scholar

[13] B. Chen et al., "Anisotropic Optoelectronic Properties of MAPbI 3 on (100),(112) and (001) Facets," vol. 50, pp.6881-6887, 2021.

Google Scholar

[14] N. Giesbrecht et al., "Single-crystal-like optoelectronic-properties of MAPbI 3 perovskite polycrystalline thin films," vol. 6, no. 11, pp.4822-4828, 2018.

DOI: 10.1039/c7ta11190h

Google Scholar

[15] K. Fradi, A. Bouich, B. Slimi, and R. J. O. Chtourou, "Towards improving the optoelectronics properties of MAPbI3 (1− x) B3x/ZnO heterojunction by bromine doping," vol. 249, p.168283, 2022.

DOI: 10.1016/j.ijleo.2021.168283

Google Scholar

[16] G. Gordillo, O. G. Torres, M. C. Abella, J. C. Pena, O. J. J. o. M. R. Virguez, and Technology, "Improving the stability of MAPbI3 films by using a new synthesis route," vol. 9, no. 6, pp.13759-13769, 2020.

DOI: 10.1016/j.jmrt.2020.09.095

Google Scholar

[17] L. McGovern, M. H. Futscher, L. A. Muscarella, and B. J. T. j. o. p. c. l. Ehrler, "Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration," vol. 11, no. 17, pp.7127-7132, 2020.

DOI: 10.1021/acs.jpclett.0c01822

Google Scholar

[18] M. Caputo et al., "Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment," Scientific reports, vol. 9, no. 1, pp.1-11, 2019.

Google Scholar

[19] J. C. Garcia et al., "Band structure derived properties of HfO2 from first principles calculations," in AIP Conference Proceedings, 2005, vol. 772, no. 1, pp.189-191: American Institute of Physics.

DOI: 10.1063/1.1994057

Google Scholar

[20] F. F. Targhi, Y. S. Jalili, and F. J. R. i. p. Kanjouri, "MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties," vol. 10, pp.616-627, 2018.

DOI: 10.1016/j.rinp.2018.07.007

Google Scholar

[21] A. Bonadio et al., "Entropy-driven stabilization of the cubic phase of MaPbI 3 at room temperature," Journal of Materials Chemistry A, vol. 9, no. 2, pp.1089-1099, 2021.

Google Scholar

[22] Y. H. Soo, S. A. Ng, Y. H. Wong, and C. Y. J. J. o. M. S. M. i. E. Ng, "Thermal stability enhancement of perovskite MAPbI3 film at high temperature (150° C) by PMMA encapsulation," vol. 32, no. 11, pp.14885-14900, 2021.

DOI: 10.1007/s10854-021-06041-y

Google Scholar

[23] P. Giannozzi et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," vol. 21, no. 39, p.395502, 2009.

Google Scholar

[24] A. Marini, C. Hogan, M. Grüning, and D. J. C. P. C. Varsano, "Yambo: an ab initio tool for excited state calculations," vol. 180, no. 8, pp.1392-1403, 2009.

DOI: 10.1016/j.cpc.2009.02.003

Google Scholar

[25] D. Kammerlander, S. Botti, M. A. Marques, A. Marini, and C. J. P. R. B. Attaccalite, "Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation," vol. 86, no. 12, p.125203, 2012.

DOI: 10.1103/physrevb.86.125203

Google Scholar

[26] F. B. Aron Walsh, Jarvist Moore Frost,, "''WMD-group/hybrid-perovskites: Collection 1 '' DOI 10.5281/zenodo.2641357, https://github.com/WMD-group/hybrid-perovskites." last access in 26 june 2023.

Google Scholar

[27] S. Liu et al., "Role of organic cation orientation in formamidine based perovskite materials," vol. 11, no. 1, pp.1-10, 2021.

Google Scholar

[28] R. Syah et al., "The effect of structural phase transitions on electronic and optical properties of cspbi3 pure inorganic perovskites," vol. 11, no. 10, p.1173, 2021.

DOI: 10.3390/coatings11101173

Google Scholar

[29] W. Setyawan and S. J. C. m. s. Curtarolo, "High-throughput electronic band structure calculations: Challenges and tools," vol. 49, no. 2, pp.299-312, 2010.

DOI: 10.1016/j.commatsci.2010.05.010

Google Scholar

[30] J. Kangsabanik, M. K. Svendsen, A. Taghizadeh, A. Crovetto, and K. S. J. J. o. t. A. C. S. Thygesen, "Indirect band gap semiconductors for thin-film photovoltaics: High-throughput calculation of phonon-assisted absorption," vol. 144, no. 43, pp.19872-19883, 2022.

DOI: 10.1021/jacs.2c07567

Google Scholar

[31] M. S. J. L. N. Dresselhaus, "Solid state physics part ii optical properties of solids," vol. 17, pp.15-16, 2001.

Google Scholar