[1]
Outlook W E 2018 World Energy Outlook (2018)
Google Scholar
[2]
Tang H, Hu Q, Zheng M, Chi Y, Qin X, Pang H and Xu Q 2018 MXene–2D layered electrode materials for energy storage Prog. Nat. Sci. Mater. Int. 28 133–47
DOI: 10.1016/j.pnsc.2018.03.003
Google Scholar
[3]
Gu Y, Du W, Liu X, Gao R, Liu Y, Ma H, Xu J and Wei S 2020 Matching design of high-performance electrode materials with different energy-storage mechanism suitable for flexible hybrid supercapacitors J. Alloys Compd. 844 156196
DOI: 10.1016/j.jallcom.2020.156196
Google Scholar
[4]
Koseoglou M, Tsioumas E, Papagiannis D, Jabbour N and Mademlis C 2021 A Novel On-Board Electrochemical Impedance Spectroscopy System for Real-Time Battery Impedance Estimation IEEE Trans. Power Electron. 36 10776–87
DOI: 10.1109/tpel.2021.3063506
Google Scholar
[5]
Parveen N, Ansari M O, Han T H and Cho M H 2017 Simple and rapid synthesis of ternary polyaniline / titanium oxide / graphene by simultaneous TiO 2 generation and aniline oxidation as hybrid materials for supercapacitor applications J. Solid State Electrochem. 57–68
DOI: 10.1007/s10008-016-3310-8
Google Scholar
[6]
Yi C P and Majid S R 2018 The Electrochemical Performance of Deposited Manganese Oxide-Based Film as Electrode Material for Electrochemical Capacitor Application Semicond. - Growth Charact.
DOI: 10.5772/intechopen.71957
Google Scholar
[7]
González A, Goikolea E, Andoni J and Mysyk R 2016 Review on supercapacitors : Technologies and materials 58 1189–206
Google Scholar
[8]
Jiang Y and Liu J 2019 Definitions of Pseudocapacitive Materials: A Brief Review Energy Environ. Mater. 2 30–7
Google Scholar
[9]
Ani J U, Akpomie K G, Okoro U C, Aneke L E, Onukwuli O D and Ujam O T 2020 Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment Appl. Water Sci. 10 1–11
DOI: 10.1007/s13201-020-1149-8
Google Scholar
[10]
Hau W, Sim P, Shee S and Wee C 2018 Recent development of mixed transition metal oxide and graphene / mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors Recent development of mixed transition metal oxide and graphene / mixed transition metal oxide based hy J. Alloys Compd. 775 1324–56
DOI: 10.1016/j.jallcom.2018.10.102
Google Scholar
[11]
Mufti N, Idiawati R, Wisodo H, Laksono Y A, Fuad A and Diantoro M 2018 The Effect of ZnO Nanorods Morphology on Electrical Properties of Perovskite Solar Cells J. Phys. Conf. Ser. 1093
DOI: 10.1088/1742-6596/1093/1/012028
Google Scholar
[12]
Masrul M Z, Suprayogi T, Diantoro M, Fuad A, Latifah E and Hidayat A 2019 The Effect of Light Irradiation on Performance of Photo-Supercapacitor of FTO/TiO 2 -ZnO-β Carotene-Quercetin/Carbon/Al/PVDF-BaTiO 3 /Al IOP Conf. Ser. Mater. Sci. Eng. 515
DOI: 10.1088/1757-899x/515/1/012077
Google Scholar
[13]
Mustikasari A A, Diantoro M, Mufti N and Suryana R 2018 THE EFFECT OF NANO ZnO MORPHOLOGY ON STRUCTURE, DIELECTRIC CONSTANT, AND DISSIPATION FACTOR OF CA-NANO ZnO/ITO FILMS J. Neutrino 10 65
DOI: 10.18860/neu.v10i2.4924
Google Scholar
[14]
Liu X, Liu H and Sun X 2020 Aligned ZnO nanorod@Ni-Co layered double hydroxide composite nanosheet arrays with a core-shell structure as high-performance supercapacitor electrode materials CrystEngComm 22 1593–601
DOI: 10.1039/c9ce01550g
Google Scholar
[15]
Suprayogi T, Masrul M Z, Diantoro M, Taufiq A, Fuad A and Hidayat A 2019 The Effect of Annealing Temperature of ZnO Compact Layer and TiO 2 Mesoporous on Photo-Supercapacitor Performance IOP Conf. Ser. Mater. Sci. Eng. 515
DOI: 10.1088/1757-899x/515/1/012006
Google Scholar
[16]
Li Z, Liu P, Yun G, Shi K, Lv X, Li K, Xing J and Yang B 2014 3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors Energy 69 266–71
DOI: 10.1016/j.energy.2014.03.003
Google Scholar
[17]
Fibriyanti A A, Fuad A, Astutik W, Hidayat N, Prihandoko B, Mufti N and Diantoro M 2019 Synthesis and Crystal Structure Analysis of LiNiSi x P 1-x O 4 /C as a Cathode Material for the Lithium-ion Batteries Application IOP Conf. Ser. Mater. Sci. Eng. 515
DOI: 10.1088/1757-899x/515/1/012043
Google Scholar
[18]
Demir M, Tessema T D, Farghaly A A, Nyankson E, Saraswat S K, Aksoy B, Islamoglu T, Collinson M M, El-Kaderi H M and Gupta R B 2018 Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications Int. J. Energy Res. 42 2686–700
DOI: 10.1002/er.4058
Google Scholar
[19]
Khan M I, Bhatti K A, Qindeel R, Alonizan N and Althobaiti H S 2017 Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique Results Phys. 7 651–5
DOI: 10.1016/j.rinp.2016.12.029
Google Scholar
[20]
Diantoro M, Mustikasari A A, Wijayanti N, Yogihati C and Taufiq A 2017 Microstructure and dielectric properties of cellulose acetate-ZnO/ITO composite films based on water hyacinth J. Phys. Conf. Ser. 853
DOI: 10.1088/1742-6596/853/1/012047
Google Scholar
[21]
Zedadra O, Guerrieri A, Jouandeau N, Seridi H, Fortino G, Spezzano G, Pradhan-Salike I, Raj Pokharel J, The Commissioner of Law, Freni G, La Loggia G, Notaro V, McGuire T J, Sjoquist D L, Longley P, Batty M, Chin N, McNulty J, TVERSK K A A, Gilbert N, Kim J H J H, Choi I K, Elmayel I, Higueras P L, Bouzid J, Noguero E M G, Elouaer Z, Of F, Salvati L, Zitti M, Thanki N, Torres H, Alves H, de Oliveira M A, Madanipour A, Madani A, Azzam A, Belhaj Ali A, Ludlow D, Ayazli I E, Gul F K, Baslik S, Yakup A E, Kotay D, Rusli N, Majid M R, Bakir S M, U.S. Environmental Protection Agency, Yang T, Jin Y, Yan L, Pei P, Mada U G, Stevaux J C, Latrubesse E M, Hermann M L de P, Aquino S, Guite L T S, Lalonde M N, Rogers C K, Dutta V, Singh A, Prasad N, Genovese E, Garambois P A, Larnier K, Roux H, Labat D, Dartus D, Hossain M T S, Parkinson J, Tayler K, Mark O, Shah N J, The Albert Team, Nijkamp P, Olaide M A, Onyedikachi.J O, Blessing K N, Joseph E, Hilda U O, Nnaemeka M I, Rejoice I E, Zainab H, Nor Hisham M G, Larry Charles S @ J, Yamanaka S, Ishiyama N, Senzaki M, Morimoto J, Kitazawa M, Fuke N, Nakamura F, Hadi A S, Shah A H H, Idrus S, Zhang S, Li Y Y, et al 2019 No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title Sustain. 11 1–14
Google Scholar
[22]
Shamhari N M, Wee B S, Chin S F and Kok K Y 2018 Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution Acta Chim. Slov. 65 578–85
DOI: 10.17344/acsi.2018.4213
Google Scholar
[23]
Diantoro M, Fitriana I N, Parasmayanti F, Nasikhudin, Taufiq A, Sunaryono, Mufti N and Nur H 2017 Crystallinity and Electrical Conductivity of PANI-Ag/Ni Film: The Role of Ultrasonic and Silver Doped IOP Conf. Ser. Mater. Sci. Eng. 202
DOI: 10.1088/1757-899x/202/1/012005
Google Scholar
[24]
Sawitri R A, Suryanti L, Zuhri F U and Diantoro M 2019 Dielectric Properties of Dirt Sugarcane Sediment (DSS) Extract-BaTiO3 for Organic Supercapacitors IOP Conf. Ser. Mater. Sci. Eng. 515
DOI: 10.1088/1757-899x/515/1/012062
Google Scholar
[25]
Li Y, Kamdem P and Jin X J 2021 Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors J. Alloys Compd. 850 156608
DOI: 10.1016/j.jallcom.2020.156608
Google Scholar
[26]
Diantoro M, Suryanti L, Zuhri F U, Suryani S E I and Chuenchom L 2019 Manganese Oxide and Temperature Induced on Microstructure and Electrical Properties of Graphene-(Mn2O3)x-ZnO/Ni Foam IOP Conf. Ser. Mater. Sci. Eng. 515
DOI: 10.1088/1757-899x/515/1/012097
Google Scholar
[27]
Kumar Y, Chopra S, Gupta A, Kumar Y, Uke S J and Mardikar S P 2020 Low temperature synthesis of MnO2 nanostructures for supercapacitor application Mater. Sci. Energy Technol. 3 566–74
DOI: 10.1016/j.mset.2020.06.002
Google Scholar
[28]
Sadhukhan P, Kundu M, Rana S, Kumar R, Das J and Sil P C 2019 Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties Toxicol. Reports 6 176–85
DOI: 10.1016/j.toxrep.2019.01.006
Google Scholar
[29]
Idiawati R, Mufti N, Taufiq A, Wisodo H, Laila I K R, Fuad A and Sunaryono 2017 Effect of Growth Time on the Characteristics of ZnO Nanorods IOP Conf. Ser. Mater. Sci. Eng. 202
DOI: 10.1088/1757-899x/202/1/012050
Google Scholar
[30]
Suryani S E I, Sa'Adah U, Amini W N L, Suprayogi T, Mustikasari A A, Taufiq A, Sunaryono, Diantoro M and Nur H 2018 Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA J. Phys. Conf. Ser. 1093
DOI: 10.1088/1742-6596/1093/1/012003
Google Scholar
[31]
Ates M and Kuzgun O 2020 Modified carbon black, C.B./MnO2 and C.B./MnO2/PPy nanocomposites synthesized by microwave-assisted method for energy storage devices with high electrochemical performances Plast. Rubber Compos. 49 342–56
DOI: 10.1080/14658011.2020.1753336
Google Scholar
[32]
Hashmi S A, Yadav N and Singh M K 2020 Polymer Electrolytes for Supercapacitor and Challenges Polym. Electrolytes 231–97
Google Scholar
[33]
Luthfiyah I, Utomo J, Diantoro M, Mufti N, Suprayogi T, Yudyanto Y and Aripriharta A 2020 The effect of spincoating speed on ZnONR microstructure and it's potential of ZnONR/Aluminum foil electrodes symmetric supercapacitors J. Phys. Conf. Ser. 1595
DOI: 10.1088/1742-6596/1595/1/012001
Google Scholar
[34]
Erradi A, Touhtouh S, El Fallah J, El Ballouti A and Hajjaji A 2021 Performance evaluation of supercapacitors based on activated carbons and investigation of the impact of aging on the electrodes J. Energy Storage 40 102836
DOI: 10.1016/j.est.2021.102836
Google Scholar
[35]
Wang R, Qian Y, Li W, Zhu S, Liu F, Guo Y, Chen M, Li Q and Liu L 2018 Performance-enhanced activated carbon electrodes for supercapacitors combining both graphene-modified current collectors and graphene conductive additive Materials (Basel). 11 1–13
DOI: 10.3390/ma11050799
Google Scholar
[36]
Chodankar N R, Pham H D, Nanjundan A K, Fernando J F S, Jayaramulu K, Golberg D, Han Y K and Dubal D P 2020 True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors Small 16 1–35
DOI: 10.1002/smll.202002806
Google Scholar
[37]
Dewi A S P, Mufti N, Fibriyanti A A, Diantoro M, Taufiq A, Hidayat A, Sunaryono and Nur H 2020 The improvement of Triboelectric effect of ZnO Nanorods/PAN in flexible Nanogenerator by adding TiO2 nanoparticle J. Polym. Res. 27 1–10
DOI: 10.1007/s10965-020-02121-5
Google Scholar
[38]
Xiao X, Han B, Chen G, Wang L and Wang Y 2017 Preparation and electrochemical performances of carbon sphere @ ZnO core-shell nanocomposites for supercapacitor applications Nat. Publ. Gr. 1–13
DOI: 10.1038/srep40167
Google Scholar
[39]
Diantoro M, Luthfiyah I, Istiqomah, Wisodo H, Utomo J and Meevasana W 2022 Electrochemical Performance of Symmetric Supercapacitor Based on Activated Carbon Biomass TiO2Nanocomposites J. Phys. Conf. Ser. 2243
DOI: 10.1088/1742-6596/2243/1/012077
Google Scholar
[40]
Thirumal V, Yuvakkumar R, Ravi G, Dineshkumar G, Ganesan M, Alotaibi S H and Velauthapillai D 2022 Characterization of activated biomass carbon from tea leaf for supercapacitor applications Chemosphere 291 132931
DOI: 10.1016/j.chemosphere.2021.132931
Google Scholar
[41]
Bang J H, Lee H-M, An K-H and Kim B-J 2017 A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors Appl. Surf. Sci. 415 61–6
DOI: 10.1016/j.apsusc.2017.01.007
Google Scholar
[42]
Yang Z, Tian J, Ye Z, Jin Y, Cui C, Xie Q, Wang J, Zhang G, Dong Z, Miao Y, Yu X, Qian W and Wei F 2020 High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: Fabrication and simulation Energy Storage Mater. 33 18–25
DOI: 10.1016/j.ensm.2020.07.020
Google Scholar
[43]
Abdul Mageeth A M, Park S J, Jeong M, Kim W and Yu C 2020 Planar-type thermally chargeable supercapacitor without an effective heat sink and performance variations with layer thickness and operation conditions Appl. Energy 268 114975
DOI: 10.1016/j.apenergy.2020.114975
Google Scholar
[44]
Kumagai S, Mukaiyachi K and Tashima D 2015 Rate and cycle performances of supercapacitors with different electrode thickness using non-aqueous electrolyte J. Energy Storage 3 10–7
DOI: 10.1016/j.est.2015.08.002
Google Scholar
[45]
Tan Y, An F, Liu Y, Li S, He P, Zhang N, Li P and Qu X 2021 Reaction kinetics in rechargeable zinc-ion batteries J. Power Sources 492 229655
DOI: 10.1016/j.jpowsour.2021.229655
Google Scholar