ZnONR Microstructure Modification and their Potential for High Reversibillity Performance of AC-Mn2O3 Supercapacitor

Article Preview

Abstract:

One of Indonesia's most significant issues with technological growth is the lack of electrical energy storage devices. Active materials have low electrical conductivity, accessibility, and ion diffusion. Therefore, it is urgently required to study the combination of higher electrical conductivity ZnO and high surface area of AC-Mn2O3. However, ZnO nanorods (ZnONR) can be modified from ZnO nanoparticles (ZnONP). The structure modification may increase energy density due to having a higher surface area than ZnONP. Three different electrodes with AC-Mn2O3 addition various spin coated of 1000 rpm (MZnONR1), 2500 rpm (MZnONR2), and 3000 rpm (MZnONR3). The electrodes were then packaged in a sandwich flat symmetric supercapacitor. The characterization was carried out using X-RD, SEM-EDX cross-section, FTIR, and Cyclic Voltammetric. It is obtained that the highest specific capacitance showed by symmetric supercapacitor MZnONR1 with low speed of spin coating. We also found that the greater the deposited ZnNR content, the lowest thickness until 43.76 μm, the crystallinity until 62% and the highest porosity until 79%. This shows that the MZnONR1 sample exhibits the best electrochemical performance, which is supported by its morphological properties. It is shown that the higher the Zn content, the stability performance AC-Mn2O3 supercapacitor higher. ZnONR1 sandwich flat symmetric supercapacitor have a specific capacitance 0.0086 Fg-1 with an 0.00433 Whg-1 energy density. Furthermore, it was found that the addition of the AC-Mn2O3 increased 2800x compared to the ZnONR1, which reached 28.04 Fg-1 and an 14.09 Whg-1 of capacitance specific and energy density, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1109)

Pages:

53-66

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Outlook W E 2018 World Energy Outlook (2018)

Google Scholar

[2] Tang H, Hu Q, Zheng M, Chi Y, Qin X, Pang H and Xu Q 2018 MXene–2D layered electrode materials for energy storage Prog. Nat. Sci. Mater. Int. 28 133–47

DOI: 10.1016/j.pnsc.2018.03.003

Google Scholar

[3] Gu Y, Du W, Liu X, Gao R, Liu Y, Ma H, Xu J and Wei S 2020 Matching design of high-performance electrode materials with different energy-storage mechanism suitable for flexible hybrid supercapacitors J. Alloys Compd. 844 156196

DOI: 10.1016/j.jallcom.2020.156196

Google Scholar

[4] Koseoglou M, Tsioumas E, Papagiannis D, Jabbour N and Mademlis C 2021 A Novel On-Board Electrochemical Impedance Spectroscopy System for Real-Time Battery Impedance Estimation IEEE Trans. Power Electron. 36 10776–87

DOI: 10.1109/tpel.2021.3063506

Google Scholar

[5] Parveen N, Ansari M O, Han T H and Cho M H 2017 Simple and rapid synthesis of ternary polyaniline / titanium oxide / graphene by simultaneous TiO 2 generation and aniline oxidation as hybrid materials for supercapacitor applications J. Solid State Electrochem. 57–68

DOI: 10.1007/s10008-016-3310-8

Google Scholar

[6] Yi C P and Majid S R 2018 The Electrochemical Performance of Deposited Manganese Oxide-Based Film as Electrode Material for Electrochemical Capacitor Application Semicond. - Growth Charact.

DOI: 10.5772/intechopen.71957

Google Scholar

[7] González A, Goikolea E, Andoni J and Mysyk R 2016 Review on supercapacitors : Technologies and materials 58 1189–206

Google Scholar

[8] Jiang Y and Liu J 2019 Definitions of Pseudocapacitive Materials: A Brief Review Energy Environ. Mater. 2 30–7

Google Scholar

[9] Ani J U, Akpomie K G, Okoro U C, Aneke L E, Onukwuli O D and Ujam O T 2020 Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment Appl. Water Sci. 10 1–11

DOI: 10.1007/s13201-020-1149-8

Google Scholar

[10] Hau W, Sim P, Shee S and Wee C 2018 Recent development of mixed transition metal oxide and graphene / mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors Recent development of mixed transition metal oxide and graphene / mixed transition metal oxide based hy J. Alloys Compd. 775 1324–56

DOI: 10.1016/j.jallcom.2018.10.102

Google Scholar

[11] Mufti N, Idiawati R, Wisodo H, Laksono Y A, Fuad A and Diantoro M 2018 The Effect of ZnO Nanorods Morphology on Electrical Properties of Perovskite Solar Cells J. Phys. Conf. Ser. 1093

DOI: 10.1088/1742-6596/1093/1/012028

Google Scholar

[12] Masrul M Z, Suprayogi T, Diantoro M, Fuad A, Latifah E and Hidayat A 2019 The Effect of Light Irradiation on Performance of Photo-Supercapacitor of FTO/TiO 2 -ZnO-β Carotene-Quercetin/Carbon/Al/PVDF-BaTiO 3 /Al IOP Conf. Ser. Mater. Sci. Eng. 515

DOI: 10.1088/1757-899x/515/1/012077

Google Scholar

[13] Mustikasari A A, Diantoro M, Mufti N and Suryana R 2018 THE EFFECT OF NANO ZnO MORPHOLOGY ON STRUCTURE, DIELECTRIC CONSTANT, AND DISSIPATION FACTOR OF CA-NANO ZnO/ITO FILMS J. Neutrino 10 65

DOI: 10.18860/neu.v10i2.4924

Google Scholar

[14] Liu X, Liu H and Sun X 2020 Aligned ZnO nanorod@Ni-Co layered double hydroxide composite nanosheet arrays with a core-shell structure as high-performance supercapacitor electrode materials CrystEngComm 22 1593–601

DOI: 10.1039/c9ce01550g

Google Scholar

[15] Suprayogi T, Masrul M Z, Diantoro M, Taufiq A, Fuad A and Hidayat A 2019 The Effect of Annealing Temperature of ZnO Compact Layer and TiO 2 Mesoporous on Photo-Supercapacitor Performance IOP Conf. Ser. Mater. Sci. Eng. 515

DOI: 10.1088/1757-899x/515/1/012006

Google Scholar

[16] Li Z, Liu P, Yun G, Shi K, Lv X, Li K, Xing J and Yang B 2014 3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors Energy 69 266–71

DOI: 10.1016/j.energy.2014.03.003

Google Scholar

[17] Fibriyanti A A, Fuad A, Astutik W, Hidayat N, Prihandoko B, Mufti N and Diantoro M 2019 Synthesis and Crystal Structure Analysis of LiNiSi x P 1-x O 4 /C as a Cathode Material for the Lithium-ion Batteries Application IOP Conf. Ser. Mater. Sci. Eng. 515

DOI: 10.1088/1757-899x/515/1/012043

Google Scholar

[18] Demir M, Tessema T D, Farghaly A A, Nyankson E, Saraswat S K, Aksoy B, Islamoglu T, Collinson M M, El-Kaderi H M and Gupta R B 2018 Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications Int. J. Energy Res. 42 2686–700

DOI: 10.1002/er.4058

Google Scholar

[19] Khan M I, Bhatti K A, Qindeel R, Alonizan N and Althobaiti H S 2017 Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique Results Phys. 7 651–5

DOI: 10.1016/j.rinp.2016.12.029

Google Scholar

[20] Diantoro M, Mustikasari A A, Wijayanti N, Yogihati C and Taufiq A 2017 Microstructure and dielectric properties of cellulose acetate-ZnO/ITO composite films based on water hyacinth J. Phys. Conf. Ser. 853

DOI: 10.1088/1742-6596/853/1/012047

Google Scholar

[21] Zedadra O, Guerrieri A, Jouandeau N, Seridi H, Fortino G, Spezzano G, Pradhan-Salike I, Raj Pokharel J, The Commissioner of Law, Freni G, La Loggia G, Notaro V, McGuire T J, Sjoquist D L, Longley P, Batty M, Chin N, McNulty J, TVERSK K A A, Gilbert N, Kim J H J H, Choi I K, Elmayel I, Higueras P L, Bouzid J, Noguero E M G, Elouaer Z, Of F, Salvati L, Zitti M, Thanki N, Torres H, Alves H, de Oliveira M A, Madanipour A, Madani A, Azzam A, Belhaj Ali A, Ludlow D, Ayazli I E, Gul F K, Baslik S, Yakup A E, Kotay D, Rusli N, Majid M R, Bakir S M, U.S. Environmental Protection Agency, Yang T, Jin Y, Yan L, Pei P, Mada U G, Stevaux J C, Latrubesse E M, Hermann M L de P, Aquino S, Guite L T S, Lalonde M N, Rogers C K, Dutta V, Singh A, Prasad N, Genovese E, Garambois P A, Larnier K, Roux H, Labat D, Dartus D, Hossain M T S, Parkinson J, Tayler K, Mark O, Shah N J, The Albert Team, Nijkamp P, Olaide M A, Onyedikachi.J O, Blessing K N, Joseph E, Hilda U O, Nnaemeka M I, Rejoice I E, Zainab H, Nor Hisham M G, Larry Charles S @ J, Yamanaka S, Ishiyama N, Senzaki M, Morimoto J, Kitazawa M, Fuke N, Nakamura F, Hadi A S, Shah A H H, Idrus S, Zhang S, Li Y Y, et al 2019 No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title Sustain. 11 1–14

Google Scholar

[22] Shamhari N M, Wee B S, Chin S F and Kok K Y 2018 Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution Acta Chim. Slov. 65 578–85

DOI: 10.17344/acsi.2018.4213

Google Scholar

[23] Diantoro M, Fitriana I N, Parasmayanti F, Nasikhudin, Taufiq A, Sunaryono, Mufti N and Nur H 2017 Crystallinity and Electrical Conductivity of PANI-Ag/Ni Film: The Role of Ultrasonic and Silver Doped IOP Conf. Ser. Mater. Sci. Eng. 202

DOI: 10.1088/1757-899x/202/1/012005

Google Scholar

[24] Sawitri R A, Suryanti L, Zuhri F U and Diantoro M 2019 Dielectric Properties of Dirt Sugarcane Sediment (DSS) Extract-BaTiO3 for Organic Supercapacitors IOP Conf. Ser. Mater. Sci. Eng. 515

DOI: 10.1088/1757-899x/515/1/012062

Google Scholar

[25] Li Y, Kamdem P and Jin X J 2021 Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors J. Alloys Compd. 850 156608

DOI: 10.1016/j.jallcom.2020.156608

Google Scholar

[26] Diantoro M, Suryanti L, Zuhri F U, Suryani S E I and Chuenchom L 2019 Manganese Oxide and Temperature Induced on Microstructure and Electrical Properties of Graphene-(Mn2O3)x-ZnO/Ni Foam IOP Conf. Ser. Mater. Sci. Eng. 515

DOI: 10.1088/1757-899x/515/1/012097

Google Scholar

[27] Kumar Y, Chopra S, Gupta A, Kumar Y, Uke S J and Mardikar S P 2020 Low temperature synthesis of MnO2 nanostructures for supercapacitor application Mater. Sci. Energy Technol. 3 566–74

DOI: 10.1016/j.mset.2020.06.002

Google Scholar

[28] Sadhukhan P, Kundu M, Rana S, Kumar R, Das J and Sil P C 2019 Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties Toxicol. Reports 6 176–85

DOI: 10.1016/j.toxrep.2019.01.006

Google Scholar

[29] Idiawati R, Mufti N, Taufiq A, Wisodo H, Laila I K R, Fuad A and Sunaryono 2017 Effect of Growth Time on the Characteristics of ZnO Nanorods IOP Conf. Ser. Mater. Sci. Eng. 202

DOI: 10.1088/1757-899x/202/1/012050

Google Scholar

[30] Suryani S E I, Sa'Adah U, Amini W N L, Suprayogi T, Mustikasari A A, Taufiq A, Sunaryono, Diantoro M and Nur H 2018 Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA J. Phys. Conf. Ser. 1093

DOI: 10.1088/1742-6596/1093/1/012003

Google Scholar

[31] Ates M and Kuzgun O 2020 Modified carbon black, C.B./MnO2 and C.B./MnO2/PPy nanocomposites synthesized by microwave-assisted method for energy storage devices with high electrochemical performances Plast. Rubber Compos. 49 342–56

DOI: 10.1080/14658011.2020.1753336

Google Scholar

[32] Hashmi S A, Yadav N and Singh M K 2020 Polymer Electrolytes for Supercapacitor and Challenges Polym. Electrolytes 231–97

Google Scholar

[33] Luthfiyah I, Utomo J, Diantoro M, Mufti N, Suprayogi T, Yudyanto Y and Aripriharta A 2020 The effect of spincoating speed on ZnONR microstructure and it's potential of ZnONR/Aluminum foil electrodes symmetric supercapacitors J. Phys. Conf. Ser. 1595

DOI: 10.1088/1742-6596/1595/1/012001

Google Scholar

[34] Erradi A, Touhtouh S, El Fallah J, El Ballouti A and Hajjaji A 2021 Performance evaluation of supercapacitors based on activated carbons and investigation of the impact of aging on the electrodes J. Energy Storage 40 102836

DOI: 10.1016/j.est.2021.102836

Google Scholar

[35] Wang R, Qian Y, Li W, Zhu S, Liu F, Guo Y, Chen M, Li Q and Liu L 2018 Performance-enhanced activated carbon electrodes for supercapacitors combining both graphene-modified current collectors and graphene conductive additive Materials (Basel). 11 1–13

DOI: 10.3390/ma11050799

Google Scholar

[36] Chodankar N R, Pham H D, Nanjundan A K, Fernando J F S, Jayaramulu K, Golberg D, Han Y K and Dubal D P 2020 True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors Small 16 1–35

DOI: 10.1002/smll.202002806

Google Scholar

[37] Dewi A S P, Mufti N, Fibriyanti A A, Diantoro M, Taufiq A, Hidayat A, Sunaryono and Nur H 2020 The improvement of Triboelectric effect of ZnO Nanorods/PAN in flexible Nanogenerator by adding TiO2 nanoparticle J. Polym. Res. 27 1–10

DOI: 10.1007/s10965-020-02121-5

Google Scholar

[38] Xiao X, Han B, Chen G, Wang L and Wang Y 2017 Preparation and electrochemical performances of carbon sphere @ ZnO core-shell nanocomposites for supercapacitor applications Nat. Publ. Gr. 1–13

DOI: 10.1038/srep40167

Google Scholar

[39] Diantoro M, Luthfiyah I, Istiqomah, Wisodo H, Utomo J and Meevasana W 2022 Electrochemical Performance of Symmetric Supercapacitor Based on Activated Carbon Biomass TiO2Nanocomposites J. Phys. Conf. Ser. 2243

DOI: 10.1088/1742-6596/2243/1/012077

Google Scholar

[40] Thirumal V, Yuvakkumar R, Ravi G, Dineshkumar G, Ganesan M, Alotaibi S H and Velauthapillai D 2022 Characterization of activated biomass carbon from tea leaf for supercapacitor applications Chemosphere 291 132931

DOI: 10.1016/j.chemosphere.2021.132931

Google Scholar

[41] Bang J H, Lee H-M, An K-H and Kim B-J 2017 A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors Appl. Surf. Sci. 415 61–6

DOI: 10.1016/j.apsusc.2017.01.007

Google Scholar

[42] Yang Z, Tian J, Ye Z, Jin Y, Cui C, Xie Q, Wang J, Zhang G, Dong Z, Miao Y, Yu X, Qian W and Wei F 2020 High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: Fabrication and simulation Energy Storage Mater. 33 18–25

DOI: 10.1016/j.ensm.2020.07.020

Google Scholar

[43] Abdul Mageeth A M, Park S J, Jeong M, Kim W and Yu C 2020 Planar-type thermally chargeable supercapacitor without an effective heat sink and performance variations with layer thickness and operation conditions Appl. Energy 268 114975

DOI: 10.1016/j.apenergy.2020.114975

Google Scholar

[44] Kumagai S, Mukaiyachi K and Tashima D 2015 Rate and cycle performances of supercapacitors with different electrode thickness using non-aqueous electrolyte J. Energy Storage 3 10–7

DOI: 10.1016/j.est.2015.08.002

Google Scholar

[45] Tan Y, An F, Liu Y, Li S, He P, Zhang N, Li P and Qu X 2021 Reaction kinetics in rechargeable zinc-ion batteries J. Power Sources 492 229655

DOI: 10.1016/j.jpowsour.2021.229655

Google Scholar