Green Synthesis of Citric Acid-Crosslinked Cellulose Acetate Membrane for Polymer Electrolyte

Article Preview

Abstract:

Safer alternative for lithium-ion battery containing liquid electrolyte was proposed using solid polymer electrolyte as a combo separator/electrolyte. In this work, cellulose acetate (CA) was used to replace fossil-based polymer as battery separator. To further promote sustainable membrane fabrication, dimethylsulfoxide (DMSO) and citric acid was used as solvent and cross-linking agent, respectively. Branched polyethyleneimine (bPEI) was also incorporated in the polymer electrolyte complex to promote electrolyte salt dissociation within the matrix. Crosslinking of CA-bPEI using citric acid showed promising properties compared to unmodified CA membrane. Better thermal stability and lower crystallinity were seen in the modified CA membrane, resulting in better ionic conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1109)

Pages:

97-102

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schaefer J L, Lu Y, Moganty S S, Agarwal P, Jayaprakash N and Archer L a. 2012 Electrolytes for high-energy lithium batteries Appl. Nanosci. 2 91–109

DOI: 10.1007/s13204-011-0044-x

Google Scholar

[2] Johari N A, Kudin T I T, Ali A M M, Winie T and Yahya M Z A 2009 Studies on cellulose acetate-based gel polymer electrolytes for proton batteries Mater. Res. Innov. 13 232–4

DOI: 10.1179/143307509x440389

Google Scholar

[3] Asghar M R, Zhang Y, Wu A, Yan X, Shen S, Ke C and Zhang J 2018 Preparation of microporous Cellulose/Poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method J. Power Sources 379 197–205

DOI: 10.1016/j.jpowsour.2018.01.052

Google Scholar

[4] Guéguen A, Streich D, He M, Mendez M, Chesneau F F, Novák P and Berg E J 2016 Decomposition of LiPF 6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry J. Electrochem. Soc. 163 A1095–100

DOI: 10.1149/2.0981606jes

Google Scholar

[5] Lee Y Y and Liu Y L 2017 Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery Electrochim. Acta 258 1329–35

DOI: 10.1016/j.electacta.2017.11.191

Google Scholar

[6] Liu B, Huang Y, Cao H, Song A, Lin Y, Wang M and Li X 2018 A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane J. Solid State Electrochem. 22 807–16

DOI: 10.1007/s10008-017-3814-x

Google Scholar

[7] Zhao X, Wang W, Huang C, Luo L, Deng Z, Guo W, Xu J and Meng Z 2021 A novel cellulose membrane from cattail fibers as separator for Li-ion batteries Cellulose 28 9309–21

DOI: 10.1007/s10570-021-04110-3

Google Scholar

[8] Couadou E, Jacquemin J, Galiano H, Hardacre C and Anouti M 2013 A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents J. Phys. Chem. B 117 1389–402

DOI: 10.1021/jp308139r

Google Scholar

[9] Wang Q, Ping P, Zhao X, Chu G, Sun J and Chen C 2012 Thermal runaway caused fire and explosion of lithium ion battery J. Power Sources 208 210–24

DOI: 10.1016/j.jpowsour.2012.02.038

Google Scholar

[10] Fenton D E, Parker J M and Wright P V. 1973 Complexes of alkali metal ions with poly(ethylene oxide) Polymer (Guildf). 14 589

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[11] Wright P V. 1975 Electrical conductivity in ionic complexes of poly(ethylene oxide) Br. Polym. J. 7 319–27

Google Scholar

[12] Zhang H and Armand M 2021 History of Solid Polymer Electrolyte-Based Solid-State Lithium Metal Batteries: A Personal Account Isr. J. Chem. 61 94–100

DOI: 10.1002/ijch.202000066

Google Scholar

[13] Teo L P, Buraidah M H and Arof A K 2020 Polysaccharide-based polymer electrolytes for future renewable energy sources (Elsevier Inc.)

DOI: 10.1016/b978-0-12-820628-7.00011-3

Google Scholar

[14] Chaurasia S K, Sharma A K, Singh P K, Lu L, Ni J, Savilov S V, Kuznetsov A, Polu A R, Singh A and Singh M K 2022 Structural , thermal , and electrochemical studies of biodegradable gel polymer electrolyte for electric double layer capacitor 0 1–10

DOI: 10.1177/09540083221101757

Google Scholar

[15] M Roganda L Lumban Gaol, Roganda Sitorus, Yanthi S, Indra Surya and Renita Manurung 2013 Pembuatan Selulosa Asetat Dari Α -Selulosa Tandan Kosong Kelapa Sawit J. Tek. Kim. USU 2 33–9

DOI: 10.32734/jtk.v2i3.1447

Google Scholar

[16] Zewde B W, Carbone L, Greenbaum S and Hassoun J 2018 A novel polymer electrolyte membrane for application in solid state lithium metal battery Solid State Ionics 317 97–102

DOI: 10.1016/j.ssi.2017.12.039

Google Scholar

[17] Malathi J, Kumaravadivel M, Brahmanandhan G M, Hema M, Baskaran R and Selvasekarapandian S 2010 Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte J. Non. Cryst. Solids 356 2277–81

DOI: 10.1016/j.jnoncrysol.2010.08.011

Google Scholar

[18] Wu H, Lei Y, Lu J, Zhu R, Xiao D, Jiao C, Xia R, Zhang Z, Shen G, Liu Y, Li S and Li M 2019 Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films Food Hydrocoll. 97 105208

DOI: 10.1016/j.foodhyd.2019.105208

Google Scholar

[19] Mahalakshmi M, Selvanayagam S, Selvasekarapandian S, Moniha V, Manjuladevi R and Sangeetha P 2019 Characterization of biopolymer electrolytes based on cellulose acetate with magnesium perchlorate (Mg(ClO4)2) for energy storage devices J. Sci. Adv. Mater. Devices 4 276–84

DOI: 10.1016/j.jsamd.2019.04.006

Google Scholar

[20] Ramesh S, Shanti R and Morris E 2013 Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture Carbohydr. Polym. 91 14–21

DOI: 10.1016/j.carbpol.2012.07.061

Google Scholar

[21] Kanafi N M, Rahman N A and Rosdi N H 2019 Citric acid cross-linking of highly porous carboxymethyl cellulose/poly(ethylene oxide) composite hydrogel films for controlled release applications Mater. Today Proc. 7 721–31

DOI: 10.1016/j.matpr.2018.12.067

Google Scholar

[22] Mahdavi H and Shahalizade T 2015 Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester J. Memb. Sci. 473 256–66

DOI: 10.1016/j.memsci.2014.09.013

Google Scholar

[23] Arya A and Sharma A L 2018 Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes J. Mater. Sci. Mater. Electron. 29 17903–20

DOI: 10.1007/s10854-018-9905-3

Google Scholar

[24] Sudaryanto, Yulianti E, Deswita, Wahyudianingsih, Anggreyni D N P and Kartini E 2019 Interfacial properties of solid polymer electrolyte for lithium-ion battery IOP Conf. Ser. Mater. Sci. Eng. 553 012061

DOI: 10.1088/1757-899x/553/1/012061

Google Scholar

[25] Ghiya V P, Dave V, Gross R A and Mccarthy S P 1996 Biodegradability of cellulose acetate plasticized with citrate esters J. Macromol. Sci. - Pure Appl. Chem. 33 627–38

DOI: 10.1080/10601329608010883

Google Scholar

[26] Lehmann M L, Yang G, Nanda J and Saito T 2020 Well-designed Crosslinked Polymer Electrolyte Enables High Ionic Conductivity and Enhanced Salt Solvation J. Electrochem. Soc. 167 070539

DOI: 10.1149/1945-7111/ab7c6e

Google Scholar