Effect of Electrolyte Type on Supercapbatteries Based on Silicon as Anode and Cassava Tuber Activated Carbon as Cathode

Article Preview

Abstract:

Supercapbatteries are energy storage devices to solve low power and energy density problems. In this study, using cassava tubers activated carbon on the cathode side and silicon on the anode side. The electrodes are arranged in a coin cell device using various electrolytes 6M KOH and 1M Et4NBF4. The substrate used as the electrode is nickel foam with a drop-by-drop deposition technique. Microstructural properties of cassava tuber activated carbon and silicon were characterized using XRD, SEM, and FTIR. XRD showed cassava tuber-activated carbon was in an amorphous phase and the diffraction peak was similar to that of commercial activated carbon. On the other hand, silicon exhibits a crystalline phase. Based on SEM, the particle size distribution of cassava tuber activated carbon is 8.87μm, the average pore size is 0.988μm, and the percentage of porosity is 69.49%, while the particle size distribution of silicon is 0.065μm. The FTIR results show the formation of a C=C functional group which characterizes the nature of activated carbon at a wavelength of 1592.04 cm-1. GCD tests show that the electrochemical performance of super batteries is better when using 6M KOH electrolyte, specific capacitance, power density, and energy density 27.6F/g, 282.7W/kg, and 7.4Wh/kg.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1109)

Pages:

67-76

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. W. Lee et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol. 5 (2010) 531–537.

Google Scholar

[2] D. Sui et al., High performance Li-ion capacitor fabricated with dual graphene-based materials, Nanotechnology, 32 (2021).

Google Scholar

[3] Z. Wei, H., Wang, H., Li, A., Li, H., Cui, D., Dong, M., ... & Guo, Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors, J. Alloys Compd. 820 (2020) 1-26.

DOI: 10.1016/j.jallcom.2019.153111

Google Scholar

[4] X. Song, X. Ma, Y. Li, L. Ding, and R. Jiang, Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors, Appl. Surf. Sci. 487 (2019) 189–197.

DOI: 10.1016/j.apsusc.2019.04.277

Google Scholar

[5] S. Sundari Gunasekaran, R. Subashchandra Bose, and K. Raman, Electrochemical Capacitive Performance of ZnCl2 Activated Carbon Derived from Bamboo Bagasse in Aqueous and Organic Electrolyte, Orient. J. Chem. 35 (2019) 302–307.

DOI: 10.13005/ojc/350136

Google Scholar

[6] E. Taer, N. Yanti, W. S. Mustika, A. Apriwandi, R. Taslim, and A. Agustino, Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application, Int. J. Energy Res. 44 (2020) 10192–10205.

DOI: 10.1002/er.5639

Google Scholar

[7] D. Kasprzak and M. Galinski, Chitin as a Universal and Sustainable Electrode Binder for Electrochemical Capacitors, SSRN Electron. J. (2022) 1–37.

DOI: 10.2139/ssrn.4165529

Google Scholar

[8] G. Phachwisoot et al., Sequential Production of Levulinic Acid and Supercapacitor Electrode Materials from Cassava Rhizome through an Integrated Biorefinery Process, ACS Sustain. Chem. Eng. 9 (2021) 7824–7836.

DOI: 10.1021/acssuschemeng.1c01335

Google Scholar

[9] J. Ospino-Orozco, J. Parra-Barraza, S. Cervera-Cahuana, E. E. Coral-Escobar, and O. Vargas-Ceballos, Activated carbon from cassava peel: A promising electrode material for supercapacitors, Rev. Fac. Ing. Univ. Antioquia. 102 (2022) 88–95.

DOI: 10.17533/udea.redin.20200803

Google Scholar

[10] S. Chaisit, N. Chanlek, J. Khajonrit, T. Sichumsaeng, and S. Maensiri, Preparation, characterization, and electrochemical properties of KOH-activated carbon from cassava root, Mater. Res. Express. 7 (2020).

DOI: 10.1088/2053-1591/abbf84

Google Scholar

[11] O. Sathish-Kumar, K., Vázquez-Huerta, G., Rodríguez-Castellanos, A., Poggi-Varaldo, H. M., & Solorza-Feria, Microwave assisted synthesis and characterizations of decorated activated carbon, Int. J. Electrochem. Sci. 7 (2012) 5484–5494.

DOI: 10.1016/s1452-3981(23)19636-2

Google Scholar

[12] Y. Liu et al., Accommodation of Silicon in an Interconnected Copper Network for Robust Li‐Ion Storage, Adv. Funct. Mater. 30 (2020) 191–249.

Google Scholar

[13] A. Daulay, Andriayani, Marpongahtun, and S. Gea, Synthesis Si nanoparticles from rice husk as material active electrode on secondary cell battery with X-Ray diffraction analysis, South African J. Chem. Eng. 42 (2022) 32–41.

DOI: 10.1016/j.sajce.2022.07.004

Google Scholar

[14] Y.-J. Heo and S.-J. Park, Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity, J. Ind. Eng. Chem. 31 (2015) 330–334.

DOI: 10.1016/j.jiec.2015.07.006

Google Scholar

[15] S. Mopoung, S., Moonsri, P., Palas, W., & Khumpai, Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution, Sci. world J. (2015) 1-9.

DOI: 10.1155/2015/415961

Google Scholar

[16] G. H. Lim, J.-W. Lee, J.-H. Choi, Y. C. Kang, and K. C. Roh, Efficient utilization of lignin residue for activated carbon in supercapacitor applications, Mater. Chem. Phys. 284 (2022).

DOI: 10.1016/j.matchemphys.2022.126073

Google Scholar

[17] A. Gupta, A. Jain, and S. K. Tripathi, Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application, J. Polym. Res. 28 (2021) 235.

DOI: 10.1007/s10965-021-02597-9

Google Scholar

[18] Y. Zhao et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries, Nat. Commun. 13 (2022).

DOI: 10.1038/s41467-022-29199-3

Google Scholar

[19] B. Fang et al., Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage," J. Mater. Chem. 22 (2012) 19-31.

DOI: 10.1039/c2jm33435f

Google Scholar

[20] G. Nagaraju, S. C. Sekhar, B. Ramulu, S. K. Hussain, D. Narsimulu, and J. S. Yu, Ternary MOF-Based Redox Active Sites Enabled 3D-on-2D Nanoarchitectured Battery-Type Electrodes for High-Energy-Density Supercapatteries, Nano-Micro Lett. 13 (2021) 17.

DOI: 10.1007/s40820-020-00528-9

Google Scholar

[21] Z. Zapata-Benabithe, F. Carrasco-Marín, and C. Moreno-Castilla, "Electrochemical performance of Cu- and Ag-doped carbon aerogels, Mater. Chem. Phys. 138 (2013)870-876.

DOI: 10.1016/j.matchemphys.2012.12.076

Google Scholar

[22] S. J. Yang, G., & Park, Nanoflower-like NiCo2O4 grown on biomass carbon coated nickel foam for asymmetric supercapacitor, J. Alloys Compd. 835 (2020) 155–270.

DOI: 10.1016/j.jallcom.2020.155270

Google Scholar

[23] S. Azmi, A. Klimek, and E. Frackowiak, Anticorrosive performance of green deep eutectic solvent for electrochemical capacitor, Chem. Eng. J. 444 (2022).

DOI: 10.1016/j.cej.2022.136594

Google Scholar

[24] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Adv. 1 (2019) 3807–3835.

DOI: 10.1039/c9na00374f

Google Scholar

[25] T. Nguyen and M. de F. Montemor, Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need‐Tailored Devices, Adv. Sci. 6 (2019).

DOI: 10.1002/advs.201801797

Google Scholar