Research and Development Status of Laser Cladding on Stainless Steel Alloys: A Review

Article Preview

Abstract:

Stainless steels as one of the most appealing structural material in many fields of industries because of its resistance to corrosion, high tensile strength, durability, temperature resistant etc. To improve its surface properties and overcome issues like large heat affected zones, poor surface quality, and limited dissolvability, researchers have explored surface modifications through laser cladding. This paper gives a detailed review about the work done in recent years, in the region of laser cladding of different grades of stainless-steel alloys with different coating materials highlighting on feeding ways of cladding material, laser cladding process parameters, types of lasers employed, types of coating & composite coating materials in enhancing the surface properties of the stainless-steel substrate and their relevant applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1110)

Pages:

35-54

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Padture, N. P., Gell, M., & Jordan, E. H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science, 296(5566), 280-284

DOI: 10.1126/science.1068609

Google Scholar

[2] Budinski, K. G. (1991). Tribological properties of titanium alloys. Wear, 151(2), 203-217

DOI: 10.1016/0043-1648(91)90249-T

Google Scholar

[3] Christin, F. (2002). Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Advanced engineering materials, 4(12), 903-912

DOI: 10.1002/adem.200290001

Google Scholar

[4] Vayena O, Doumanidis C, Ranganathan R, Ando T. Welding methods for production of MMC coatings using particulate-cored wire precursors. J Manuf Process2005;7:130–9

DOI: 10.1016/S1526-6125(05)70090-6

Google Scholar

[5] Belotserkovsky M, Yelistratov A, Byeli A, Kukareko V. Steel thermal sprayedcoatings: superficial hardening by nitrogen ion implantation. Weld J2009;88:243s–8s.

Google Scholar

[6] Morks MF, Fahim NF, Kobayashi A. Microstructure, corrosion behavior, andmicrohardness of plasma-sprayed WNi composite coatings. J Manuf Process2008;10:6–11

DOI: 10.1016/j.jmapro.2008.12.001

Google Scholar

[7] Wu ZH. Empirical modeling for processing parameters' effects on coating properties in plasma spraying process. J Manuf Process 2015;19:1–13

DOI: 10.1016/j.jmapro.2015.03.007

Google Scholar

[8] Mendez PF, Barnes N, Bell K, Borle SD, Gajapathi SS, Guest SD, Izadi H, GolAK, Wood G. Welding processes for wear resistant overlays. J Manuf Process2014;16:4–25

DOI: 10.1016/j.jmapro.2013.06.011

Google Scholar

[9] Pei YT, De Hosson JTM. Functionally graded materials produced by lasercladding. Acta Mater 2000;48:2617–24

DOI: 10.1016/S1359-6454(00)00065-3

Google Scholar

[10] Lin X, Yue TM, Yang HO, Huang WD. Laser rapid forming of SS316L/Rene88DTgraded material. Mater SciEng A 2005;391:325–36

DOI: 10.1016/j.msea.2004.08.072

Google Scholar

[11] Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal com-ponents by laser forming. Int J Mach Tools Manuf2006;46:1459–68

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[12] Fraunhofer USA, F. Bartels, A. Jonnalagadda, M. Weiner, E. Stiles, Laser Cladding of Tubes. United States Patent Application Publication US 2011/0297083 A1

DOI: 10.1016/j.wear.2015.02.027

Google Scholar

[13] D. Zhang, X Zhang, Laser cladding of stainless steel with Ni‐Cr3C2 and Ni‐WC for improving erosive‐corrosive wear performance. Surface and Coatings Technology, Vol. 190 (1‐2), 2005, p.212‐217

DOI: 10.1016/j.surfcoat.2004.03.018

Google Scholar

[14] P. Wang, Y. Yang, G. Ding, J. Qi, H, Shao, Laser cladding coating against erosion‐corrosion wear and its application to mining machine parts. Wear, Vol. 209, 1997, p.96‐100 19

DOI: 10.1016/S0043-1648(97)00018-5

Google Scholar

[15] J. M. Amardo, M. J. Tobar, J. C. Alvarez, A. Yáñez, Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry. Applied Surface Science, Vol. 255, 2009, p.5535‐5556

DOI: 10.1016/j.apsusc.2008.07.198

Google Scholar

[16] T. Baldridge, G. Poling, E. Foroozmehr, R, Kovacevic, T. Metz, V. Kadekar, M. C. Gupta, Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications. Optics and Lasers in Engineering, Vol. 51, 2013, p.180‐184

DOI: 10.1016/j.optlaseng.2012.08.006

Google Scholar

[17] G. Fu, S. Liu, J. Fan. The design of Cobalt‐free, Nickel‐based alloy powder (Ni‐3) used forsealing surfaces of nuclear power valves and its structure of laser cladding coating. Nuclear Engineering and Design, Vol. 241, 2011, p.1403‐1406

DOI: 10.1016/j.nucengdes.2011.01.020

Google Scholar

[18] C.J. Novak, in: D. Peckner, I.M. Bernstein (Eds.), Handbook of Stainless Steels, McGraw-Hill, New York, 1977, p.1–4.

Google Scholar

[19] M.K. Kumar, R. Saravanan, R. Sellamuthu, V. Narayanan, Mater. Today: Proc. 5, 7571 (2018).

Google Scholar

[20] William, M. S., &Mazumder, J. Y. O. T. I. R. M. O. Y. (2003). Laser material processing. Steen springer-Verlag, London, Berlin, Heidelberg, 3, 408.

Google Scholar

[21] R. Vilar, Int. J. Powder Metall. 37 (2001) 34.

Google Scholar

[22] Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.

Google Scholar

[23] Van Acker, K., Vanhoyweghen, D., Persoons, R., &Vangrunderbeek, J. (2005). Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear, 258(1-4), 194-202.

DOI: 10.1016/j.wear.2004.09.041

Google Scholar

[24] Colaco, R., Carvalho, T., &Vilar, R. (1994). Laser cladding of stellite 6 on steel substrates. High Temp. Chem. Processes, 3(1), 21-29.

Google Scholar

[25] Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.

Google Scholar

[26] Song, L., Zeng, G., Xiao, H., Xiao, X., & Li, S. (2016). Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. Journal of Manufacturing Processes, 24, 116-124

DOI: 10.1016/j.jmapro.2016.08.004

Google Scholar

[27] Liu, J., Yu, H., Chen, C., Weng, F., & Dai, J. (2017). Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 93, 195-210

DOI: 10.1016/j.optlaseng.2017.02.007

Google Scholar

[28] Jagdheesh, R., KamachiMudali, U., Sastikumar, D., &Nath, A. K. (2005). Laser cladding of Si on austenitic stainless steel. Surface engineering, 21(2), 113-118

DOI: 10.1179/174329405X40885

Google Scholar

[29] Powell, J., Henry, P. S., & Steen, W. M. (1988). Laser cladding with preplaced powder: analysis of thermal cycling and dilution effects. Surface Engineering, 4(2), 141-149

DOI: 10.1179/sur.1988.4.2.141

Google Scholar

[30] Yellup, J. M. (1995). Laser cladding using the powder blowing technique. Surface and Coatings Technology, 71(2), 121-128

DOI: 10.1016/0257-8972(94)01010-G

Google Scholar

[31] Cheng, F. T., Lo, K. H., & Man, H. C. (2004). A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire. Materials Science and Engineering: A, 380(1-2), 20-29

DOI: 10.1016/j.msea.2004.01.056

Google Scholar

[32] Chiu, K. Y., Cheng, F. T., & Man, H. C. (2005). Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion. Materials Science and Engineering: A, 402(1-2), 126-134

DOI: 10.1016/j.msea.2005.04.013

Google Scholar

[33] Nurminen, J., Riihimäki, J., Näkki, J., &Vuoristo, P. (2006, October). Comparison of laser cladding with powder and hot and cold wire techniques. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2006, No. 1, p.1006). Laser Institute of America

DOI: 10.2351/1.5060747

Google Scholar

[34] De Oliveira, U., Ocelik, V., & De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2-3), 127-136

DOI: 10.1016/j.surfcoat.2004.06.029

Google Scholar

[35] Henri, P., Jonne, N., Sebastian, T., Jari, T., Steffen, N., & Petri, V. (2012, September). Laser cladding with coaxial wire feeding. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2012, No. 1, pp.1196-1201). Laser Institute of America

DOI: 10.2351/1.5062408

Google Scholar

[36] De Damborenea, J., Vázquez, A. J., &Fernández, B. (1994). Laser-clad 316 stainless steel with Ni-Cr powder mixtures. Materials & Design, 15(1), 41-44. https://doi.org/10.1016/0261-3069 (94)90059-0

DOI: 10.1016/0261-3069(94)90059-0

Google Scholar

[37] Lin, C. M. (2015). Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade. Vacuum, 115, 117-123

DOI: 10.1016/j.vacuum.2015.02.021

Google Scholar

[38] Pôrto, R. M., de Souza Pinto Pereira, A., & Pereira, M. (2020). Parametrization methodology for laser remelting applied over laser metal deposition single tracks. Journal of Laser Applications, 32(2), 022069

DOI: 10.2351/7.0000098

Google Scholar

[39] Sun, S., Durandet, Y., & Brandt, M. (2005). Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel. Surface and Coatings Technology, 194(2-3), 225-231

DOI: 10.1016/j.surfcoat.2004.03.058

Google Scholar

[40] Gao, W., Zhao, S., Liu, F., Wang, Y., Zhou, C., & Lin, X. (2014). Effect of defocus manner on laser cladding of Fe-based alloy powder. Surface and Coatings Technology, 248, 54-62

DOI: 10.1016/j.surfcoat.2014.03.019

Google Scholar

[41] Zhou, S., Dai, X., & Zheng, H. (2012). Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding. Optics & Laser Technology, 44(1), 190-197

DOI: 10.1016/j.optlastec.2011.06.017

Google Scholar

[42] Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H., &Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics & Laser Technology, 97, 180-186

DOI: 10.1016/j.optlastec.2017.06.026

Google Scholar

[43] Zhang, H., Shi, Y., Kutsuna, M., & Xu, G. J. (2010). Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel. Nuclear engineering and design, 240(10), 2691-2696

DOI: 10.1016/j.nucengdes.2010.05.040

Google Scholar

[44] Baddoo, N. R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of constructional steel research, 64(11), 1199-1206

DOI: 10.1016/j.jcsr.2008.07.011

Google Scholar

[45] Hemmati, I., Ocelik, V., & De Hosson, J. T. M. (2011). Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings. Journal of materials science, 46(10), 3405-3414

DOI: 10.1007/s10853-010-5229-2

Google Scholar

[46] C.J. Novak, in: D. Peckner, I.M. Bernstein (Eds.), Handbook of Stainless Steels, McGraw-Hill, New York, 1977, p.1–4.

Google Scholar

[47] Jeyaprakash, N., Yang, C. H., &Sivasankaran, S. (2020). Laser cladding process of Cobalt and Nickel based hard-micron-layers on 316L-stainless-steel-substrate. Materials and Manufacturing Processes, 35(2), 142-151

DOI: 10.1080/10426914.2019.1692354

Google Scholar

[48] Alam, M. K., Edrisy, A., Urbanic, J., &Pineault, J. (2017). Microhardness and stress analysis of laser-cladded AISI 420 martensitic stainless steel. Journal of Materials Engineering and Performance, 26(3), 1076-1084

DOI: 10.1007/s11665-017-2541-x

Google Scholar

[49] Peng, H., Li, R., Yuan, T., Wu, H., & Yan, H. (2015). Producing nanostructured Co-Cr-W alloy surface layer by laser cladding and friction stir processing. Journal of Materials Research, 30(5), 717

DOI: 10.1557/jmr.2015.28

Google Scholar

[50] Xu, G. J., &Kutsuna, M. (2006). Cladding with Stellite 6+ WC using a YAG laser robot system. Surface engineering, 22(5), 345-352

DOI: 10.1179/174329406X98430

Google Scholar

[51] Tan, H., Luo, Z., Li, Y., Yan, F., &Duan, R. (2015). Microstructure and wear resistance of Al2O3–M7C3/Fe composite coatings produced by laser controlled reactive synthesis. Optics & Laser Technology, 68, 11-17

DOI: 10.1016/j.optlastec.2014.11.006

Google Scholar

[52] Xu, J. S., Zhang, X. C., Xuan, F. Z., Wang, Z. D., &Tu, S. T. (2012). Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle. Journal of materials engineering and performance, 21(9), 1904-1911. https://doi.org/

DOI: 10.1007/s11665-011-0109-8

Google Scholar

[53] Qunshuang, M., Yajiang, L., & Juan, W. (2017). Effects of Ti addition on microstructure homogenization and wear resistance of wide-band laser clad Ni60/WC composite coatings. International Journal of Refractory Metals and Hard Materials, 64, 225-233

DOI: 10.1016/j.ijrmhm.2016.11.002

Google Scholar

[54] Lin, Y., Lei, Y., Fu, H., & Lin, J. (2015). Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding. Materials & design, 80, 82-88

DOI: 10.1016/j.matdes.2015.05.009

Google Scholar

[55] Hou, Q. Y., He, Y. Z., Zhang, Q. A., & Gao, J. S. (2007). Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process. Materials & design, 28 (6), 1982-1987. https://doi.org/10.1016/j.matdes. 2006.04.005

DOI: 10.1016/j.matdes.2006.04.005

Google Scholar

[56] Wang, X. H., Han, F., Liu, X. M., Qu, S. Y., & Zou, Z. D. (2008). Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings. Materials Science and Engineering: A, 489(1-2), 193-200

DOI: 10.1016/j.msea.2007.12.020

Google Scholar

[57] Abioye, T. E., McCartney, D. G., & Clare, A. T. (2015). Laser cladding of Inconel 625 wire for corrosion protection. Journal of Materials Processing Technology, 217, 232-240

DOI: 10.1016/j.jmatprotec.2014.10.024

Google Scholar

[58] Jagdheesh, R., KamachiMudali, U., Sastikumar, D., &Nath, A. K. (2005). Laser cladding of Si on austenitic stainless steel. Surface engineering, 21(2), 113-118.

DOI: 10.1179/174329405x40885

Google Scholar

[59] Riveiro, A., Mejías, A., Lusquiños, F., Del Val, J., Comesaña, R., Pardo, J., &Pou, J. (2014). Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers. Surface and Coatings Technology, 253, 214-220

DOI: 10.1016/j.surfcoat.2014.05.039

Google Scholar

[60] Guangyao, Z., Chenglei, W., & Yuan, G. (2016). Mechanism of rare earth CeO2 on the Ni-based laser cladding layer of 6063 Al surface. Rare Metal Materials and Engineering, 45(4), 1002-1006.

Google Scholar

[61] European Centre for Disease Prevention and Control, Special Issue: Healthcare-Associated Infections, (2009)

Google Scholar

[62] Weng, F., Yu, H., Chen, C., Liu, J., & Zhao, L. (2015). Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti–6Al–4V alloy. Journal of Alloys and Compounds, 650, 178-184. https://doi.org/10.1016/j.jallcom. 2015.07.295

DOI: 10.1016/j.jallcom.2015.07.295

Google Scholar

[63] Casey, A. L., Adams, D., Karpanen, T. J., Lambert, P. A., Cookson, B. D., Nightingale, P., ... & Elliott, T. S. J. (2010). Role of copper in reducing hospital environment contamination. Journal of Hospital Infection, 74(1), 72-77

DOI: 10.1016/j.jhin.2009.08.018

Google Scholar

[64] Niakan, S., Niakan, M., Hesaraki, S., Nejadmoghaddam, M. R., Moradi, M., Hanafiabdar, M., ... &Sabouri, M. (2013). Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur Journal of Microbiology, 6(5)

DOI: 10.5812/jjm.8341

Google Scholar

[65] Weber, D. J., Anderson, D., &Rutala, W. A. (2013). The role of the surface environment in healthcare-associated infections. Current opinion in infectious diseases, 26(4), 338-344

DOI: 10.1097/QCO.0b013e3283630f04

Google Scholar

[66] Weaver, L., Noyce, J. O., Michels, H. T., &Keevil, C. W. (2010). Potential action of copper surfaces on meticillin‐resistant Staphylococcus aureus. Journal of applied microbiology, 109(6), 2200-2205

DOI: 10.1111/j.1365-2672.2010.04852.x

Google Scholar

[67] Salgado, C. D., Sepkowitz, K. A., John, J. F., Cantey, J. R., Attaway, H. H., Freeman, K. D., ... & Schmidt, M. G. (2013). Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. infection control and hospital epidemiology, 34(5), 479-486

DOI: 10.1086/670207

Google Scholar

[68] Hans, M., Támara, J. C., Mathews, S., Bax, B., Hegetschweiler, A., Kautenburger, R., ... &Mücklich, F. (2014). Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity. Applied Surface Science, 320, 195-199

DOI: 10.1016/j.apsusc.2014.09.069

Google Scholar

[69] Qu, S., Wang, X., Zhang, M., & Zou, Z. (2008). Microstructure and wear properties of Fe–TiC surface composite coating by laser cladding. Journal of materials science, 43(5), 1546-1551

DOI: 10.1007/s10853-007-2350-y

Google Scholar

[70] Tao, X. P., Zhang, S., Zhang, C. H., Wu, C. L., Chen, J., & Abdullah, A. O. (2018). Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding. Surface and Coatings Technology, 342, 76-84

DOI: 10.1016/j.surfcoat.2018.02.032

Google Scholar

[71] Xu, G., Kutsuna, M., Liu, Z., & Yamada, K. (2006). Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel. Surface and Coatings Technology, 201(3-4), 1138-1144

DOI: 10.1016/j.surfcoat.2006.01.040

Google Scholar

[72] Singh, R., Kumar, D., Mishra, S. K., & Tiwari, S. K. (2014). Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance. Surface and Coatings Technology, 251, 87-97

DOI: 10.1016/j.surfcoat.2014.04.008

Google Scholar

[73] Jeyaprakash, N., Yang, C. H., & Tseng, S. P. (2019). Wear Tribo-performances of laser cladding Colmonoy-6 and Stellite-6 micron layers on stainless steel 304 using Yb: YAG disk laser. Metals and Materials International, 1-14

DOI: 10.1007/s12540-019-00526-6

Google Scholar

[74] Kaul, R., Ganesh, P., Albert, S. K., Jaiswal, A., Lalla, N. P., Gupta, A., ... &Nath, A. K. (2003). Laser cladding of austenitic stainless steel with hardfacing alloy nickel base. Surface engineering, 19(4), 269-273.

DOI: 10.1179/026708403322499182

Google Scholar

[75] Paul, C. P., Gandhi, B. K., Bhargava, P., Dwivedi, D. K., &Kukreja, L. M. (2014). Cobalt-free laser cladding on AISI type 316L stainless steel for improved cavitation and slurry erosion wear behavior. Journal of materials engineering and performance, 23(12), 4463-4471. https://doi.org/10.1007/ s11665-014-1244-9

DOI: 10.1007/s11665-014-1244-9

Google Scholar

[76] Feng, J., Ferreira, M. G. S., &Vilar, R. (1997). Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel. Surface and Coatings Technology, 88(1-3), 212-218

DOI: 10.1016/S0257-8972(96)02909-X

Google Scholar

[77] Awasthi, R., Limaye, P. K., Kumar, S., Kushwaha, R. P., Viswanadham, C. S., Srivastava, D., ... &Dey, G. K. (2015). Wear characteristics of Ni-based hardfacing alloy deposited on stainless steel substrate by laser cladding. Metallurgical and Materials Transactions A, 46(3), 1237-1252

DOI: 10.1007/s11661-014-2719-x

Google Scholar

[78] Zhang, D. W., Lei, T. C., & Li, F. J. (2001). Laser cladding of stainless steel with Ni–Cr3C2 for improved wear performance. Wear, 251(1-12), 1372-1376. https://doi.org/10.1016/S0043-1648 (01)00770-0

DOI: 10.1016/s0043-1648(01)00770-0

Google Scholar

[79] Tobar, M. J., Alvarez, C., Amado, J. M., Rodríguez, G., & Yanez, A. (2006). Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surface and Coatings Technology, 200(22-23), 6313-6317

DOI: 10.1016/j.surfcoat.2005.11.093

Google Scholar

[80] Zhang, S., Zhou, J., Guo, B., Zhou, H., Pu, Y., & Chen, J. (2008). Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Materials Science and Engineering: A, 491(1-2), 47-54

DOI: 10.1016/j.msea.2007.12.015

Google Scholar

[81] Guo, C., Chen, J., Zhou, J., Zhao, J., Wang, L., Yu, Y., & Zhou, H. (2012). Effects of WC–Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 206(8-9), 2064-2071

DOI: 10.1016/j.surfcoat.2011.06.005

Google Scholar

[82] He, X. M., Liu, X. B., Wang, M. D., Yang, M. S., Shi, S. H., Fu, G. Y., & Chen, S. F. (2011). Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding. Applied surface science, 258(1), 535-541

DOI: 10.1016/j.apsusc.2011.08.072

Google Scholar

[83] Jien-Wei, Y. E. H. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[84] Zhang, H., Pan, Y., & He, Y. Z. (2011). Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Materials & Design, 32(4), 1910-1915

DOI: 10.1016/j.matdes.2010.12.001

Google Scholar

[85] Wu, W., Jiang, L., Jiang, H., Pan, X., Cao, Z., Deng, D., ... & Li, T. (2015). Phase evolution and properties of Al2CrFeNiMo x high-entropy alloys coatings by laser cladding. Journal of Thermal Spray Technology, 24(7), 1333-1340

DOI: 10.1007/s11666-015-0303-6

Google Scholar

[86] Zhang, S., Wu, C. L., Zhang, C. H., Guan, M., & Tan, J. Z. (2016). Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Optics & Laser Technology, 84, 23-31

DOI: 10.1016/j.optlastec.2016.04.011

Google Scholar

[87] Wen, P., Feng, Z., & Zheng, S. (2015). Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Optics & Laser Technology, 65, 180-188

DOI: 10.1016/j.optlastec.2014.07.017

Google Scholar

[88] Sebastiani, M., Mangione, V., De Felicis, D., Bemporad, E., &Carassiti, F. (2012). Wear mechanisms and in-service surface modifications of a Stellite 6B Co–Cr alloy. Wear, 290, 10-17.

DOI: 10.1016/j.wear.2012.05.027

Google Scholar

[89] Fu, Y., Guo, N., Zhou, C., Wang, G., & Feng, J. (2021). Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment. Journal of Materials Processing Technology, 289, 116949.

DOI: 10.1016/j.jmatprotec.2020.116949

Google Scholar