p.3
p.9
p.15
p.23
p.35
p.55
p.67
p.75
p.83
Research and Development Status of Laser Cladding on Stainless Steel Alloys: A Review
Abstract:
Stainless steels as one of the most appealing structural material in many fields of industries because of its resistance to corrosion, high tensile strength, durability, temperature resistant etc. To improve its surface properties and overcome issues like large heat affected zones, poor surface quality, and limited dissolvability, researchers have explored surface modifications through laser cladding. This paper gives a detailed review about the work done in recent years, in the region of laser cladding of different grades of stainless-steel alloys with different coating materials highlighting on feeding ways of cladding material, laser cladding process parameters, types of lasers employed, types of coating & composite coating materials in enhancing the surface properties of the stainless-steel substrate and their relevant applications.
Info:
Periodical:
Pages:
35-54
Citation:
Online since:
December 2023
Price:
Сopyright:
© 2023 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] Padture, N. P., Gell, M., & Jordan, E. H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science, 296(5566), 280-284
[2] Budinski, K. G. (1991). Tribological properties of titanium alloys. Wear, 151(2), 203-217
[3] Christin, F. (2002). Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Advanced engineering materials, 4(12), 903-912
[4] Vayena O, Doumanidis C, Ranganathan R, Ando T. Welding methods for production of MMC coatings using particulate-cored wire precursors. J Manuf Process2005;7:130–9
[5] Belotserkovsky M, Yelistratov A, Byeli A, Kukareko V. Steel thermal sprayedcoatings: superficial hardening by nitrogen ion implantation. Weld J2009;88:243s–8s.
[6] Morks MF, Fahim NF, Kobayashi A. Microstructure, corrosion behavior, andmicrohardness of plasma-sprayed WNi composite coatings. J Manuf Process2008;10:6–11
[7] Wu ZH. Empirical modeling for processing parameters' effects on coating properties in plasma spraying process. J Manuf Process 2015;19:1–13
[8] Mendez PF, Barnes N, Bell K, Borle SD, Gajapathi SS, Guest SD, Izadi H, GolAK, Wood G. Welding processes for wear resistant overlays. J Manuf Process2014;16:4–25
[9] Pei YT, De Hosson JTM. Functionally graded materials produced by lasercladding. Acta Mater 2000;48:2617–24
[10] Lin X, Yue TM, Yang HO, Huang WD. Laser rapid forming of SS316L/Rene88DTgraded material. Mater SciEng A 2005;391:325–36
[11] Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal com-ponents by laser forming. Int J Mach Tools Manuf2006;46:1459–68
[12] Fraunhofer USA, F. Bartels, A. Jonnalagadda, M. Weiner, E. Stiles, Laser Cladding of Tubes. United States Patent Application Publication US 2011/0297083 A1
[13] D. Zhang, X Zhang, Laser cladding of stainless steel with Ni‐Cr3C2 and Ni‐WC for improving erosive‐corrosive wear performance. Surface and Coatings Technology, Vol. 190 (1‐2), 2005, p.212‐217
[14] P. Wang, Y. Yang, G. Ding, J. Qi, H, Shao, Laser cladding coating against erosion‐corrosion wear and its application to mining machine parts. Wear, Vol. 209, 1997, p.96‐100 19
[15] J. M. Amardo, M. J. Tobar, J. C. Alvarez, A. Yáñez, Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry. Applied Surface Science, Vol. 255, 2009, p.5535‐5556
[16] T. Baldridge, G. Poling, E. Foroozmehr, R, Kovacevic, T. Metz, V. Kadekar, M. C. Gupta, Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications. Optics and Lasers in Engineering, Vol. 51, 2013, p.180‐184
[17] G. Fu, S. Liu, J. Fan. The design of Cobalt‐free, Nickel‐based alloy powder (Ni‐3) used forsealing surfaces of nuclear power valves and its structure of laser cladding coating. Nuclear Engineering and Design, Vol. 241, 2011, p.1403‐1406
[18] C.J. Novak, in: D. Peckner, I.M. Bernstein (Eds.), Handbook of Stainless Steels, McGraw-Hill, New York, 1977, p.1–4.
[19] M.K. Kumar, R. Saravanan, R. Sellamuthu, V. Narayanan, Mater. Today: Proc. 5, 7571 (2018).
[20] William, M. S., &Mazumder, J. Y. O. T. I. R. M. O. Y. (2003). Laser material processing. Steen springer-Verlag, London, Berlin, Heidelberg, 3, 408.
[21] R. Vilar, Int. J. Powder Metall. 37 (2001) 34.
[22] Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.
[23] Van Acker, K., Vanhoyweghen, D., Persoons, R., &Vangrunderbeek, J. (2005). Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear, 258(1-4), 194-202.
[24] Colaco, R., Carvalho, T., &Vilar, R. (1994). Laser cladding of stellite 6 on steel substrates. High Temp. Chem. Processes, 3(1), 21-29.
[25] Toyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.
[26] Song, L., Zeng, G., Xiao, H., Xiao, X., & Li, S. (2016). Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. Journal of Manufacturing Processes, 24, 116-124
[27] Liu, J., Yu, H., Chen, C., Weng, F., & Dai, J. (2017). Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 93, 195-210
[28] Jagdheesh, R., KamachiMudali, U., Sastikumar, D., &Nath, A. K. (2005). Laser cladding of Si on austenitic stainless steel. Surface engineering, 21(2), 113-118
[29] Powell, J., Henry, P. S., & Steen, W. M. (1988). Laser cladding with preplaced powder: analysis of thermal cycling and dilution effects. Surface Engineering, 4(2), 141-149
[30] Yellup, J. M. (1995). Laser cladding using the powder blowing technique. Surface and Coatings Technology, 71(2), 121-128
[31] Cheng, F. T., Lo, K. H., & Man, H. C. (2004). A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire. Materials Science and Engineering: A, 380(1-2), 20-29
[32] Chiu, K. Y., Cheng, F. T., & Man, H. C. (2005). Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion. Materials Science and Engineering: A, 402(1-2), 126-134
[33] Nurminen, J., Riihimäki, J., Näkki, J., &Vuoristo, P. (2006, October). Comparison of laser cladding with powder and hot and cold wire techniques. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2006, No. 1, p.1006). Laser Institute of America
DOI: 10.2351/1.5060747
[34] De Oliveira, U., Ocelik, V., & De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2-3), 127-136
[35] Henri, P., Jonne, N., Sebastian, T., Jari, T., Steffen, N., & Petri, V. (2012, September). Laser cladding with coaxial wire feeding. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2012, No. 1, pp.1196-1201). Laser Institute of America
DOI: 10.2351/1.5062408
[36] De Damborenea, J., Vázquez, A. J., &Fernández, B. (1994). Laser-clad 316 stainless steel with Ni-Cr powder mixtures. Materials & Design, 15(1), 41-44. https://doi.org/10.1016/0261-3069 (94)90059-0
[37] Lin, C. M. (2015). Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade. Vacuum, 115, 117-123
[38] Pôrto, R. M., de Souza Pinto Pereira, A., & Pereira, M. (2020). Parametrization methodology for laser remelting applied over laser metal deposition single tracks. Journal of Laser Applications, 32(2), 022069
DOI: 10.2351/7.0000098
[39] Sun, S., Durandet, Y., & Brandt, M. (2005). Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel. Surface and Coatings Technology, 194(2-3), 225-231
[40] Gao, W., Zhao, S., Liu, F., Wang, Y., Zhou, C., & Lin, X. (2014). Effect of defocus manner on laser cladding of Fe-based alloy powder. Surface and Coatings Technology, 248, 54-62
[41] Zhou, S., Dai, X., & Zheng, H. (2012). Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding. Optics & Laser Technology, 44(1), 190-197
[42] Erfanmanesh, M., Abdollah-Pour, H., Mohammadian-Semnani, H., &Shoja-Razavi, R. (2017). An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Optics & Laser Technology, 97, 180-186
[43] Zhang, H., Shi, Y., Kutsuna, M., & Xu, G. J. (2010). Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel. Nuclear engineering and design, 240(10), 2691-2696
[44] Baddoo, N. R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of constructional steel research, 64(11), 1199-1206
[45] Hemmati, I., Ocelik, V., & De Hosson, J. T. M. (2011). Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings. Journal of materials science, 46(10), 3405-3414
[46] C.J. Novak, in: D. Peckner, I.M. Bernstein (Eds.), Handbook of Stainless Steels, McGraw-Hill, New York, 1977, p.1–4.
[47] Jeyaprakash, N., Yang, C. H., &Sivasankaran, S. (2020). Laser cladding process of Cobalt and Nickel based hard-micron-layers on 316L-stainless-steel-substrate. Materials and Manufacturing Processes, 35(2), 142-151
[48] Alam, M. K., Edrisy, A., Urbanic, J., &Pineault, J. (2017). Microhardness and stress analysis of laser-cladded AISI 420 martensitic stainless steel. Journal of Materials Engineering and Performance, 26(3), 1076-1084
[49] Peng, H., Li, R., Yuan, T., Wu, H., & Yan, H. (2015). Producing nanostructured Co-Cr-W alloy surface layer by laser cladding and friction stir processing. Journal of Materials Research, 30(5), 717
DOI: 10.1557/jmr.2015.28
[50] Xu, G. J., &Kutsuna, M. (2006). Cladding with Stellite 6+ WC using a YAG laser robot system. Surface engineering, 22(5), 345-352
[51] Tan, H., Luo, Z., Li, Y., Yan, F., &Duan, R. (2015). Microstructure and wear resistance of Al2O3–M7C3/Fe composite coatings produced by laser controlled reactive synthesis. Optics & Laser Technology, 68, 11-17
[52] Xu, J. S., Zhang, X. C., Xuan, F. Z., Wang, Z. D., &Tu, S. T. (2012). Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle. Journal of materials engineering and performance, 21(9), 1904-1911. https://doi.org/
[53] Qunshuang, M., Yajiang, L., & Juan, W. (2017). Effects of Ti addition on microstructure homogenization and wear resistance of wide-band laser clad Ni60/WC composite coatings. International Journal of Refractory Metals and Hard Materials, 64, 225-233
[54] Lin, Y., Lei, Y., Fu, H., & Lin, J. (2015). Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding. Materials & design, 80, 82-88
[55] Hou, Q. Y., He, Y. Z., Zhang, Q. A., & Gao, J. S. (2007). Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process. Materials & design, 28 (6), 1982-1987. https://doi.org/10.1016/j.matdes. 2006.04.005
[56] Wang, X. H., Han, F., Liu, X. M., Qu, S. Y., & Zou, Z. D. (2008). Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings. Materials Science and Engineering: A, 489(1-2), 193-200
[57] Abioye, T. E., McCartney, D. G., & Clare, A. T. (2015). Laser cladding of Inconel 625 wire for corrosion protection. Journal of Materials Processing Technology, 217, 232-240
[58] Jagdheesh, R., KamachiMudali, U., Sastikumar, D., &Nath, A. K. (2005). Laser cladding of Si on austenitic stainless steel. Surface engineering, 21(2), 113-118.
[59] Riveiro, A., Mejías, A., Lusquiños, F., Del Val, J., Comesaña, R., Pardo, J., &Pou, J. (2014). Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers. Surface and Coatings Technology, 253, 214-220
[60] Guangyao, Z., Chenglei, W., & Yuan, G. (2016). Mechanism of rare earth CeO2 on the Ni-based laser cladding layer of 6063 Al surface. Rare Metal Materials and Engineering, 45(4), 1002-1006.
[61] European Centre for Disease Prevention and Control, Special Issue: Healthcare-Associated Infections, (2009)
[62] Weng, F., Yu, H., Chen, C., Liu, J., & Zhao, L. (2015). Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti–6Al–4V alloy. Journal of Alloys and Compounds, 650, 178-184. https://doi.org/10.1016/j.jallcom. 2015.07.295
[63] Casey, A. L., Adams, D., Karpanen, T. J., Lambert, P. A., Cookson, B. D., Nightingale, P., ... & Elliott, T. S. J. (2010). Role of copper in reducing hospital environment contamination. Journal of Hospital Infection, 74(1), 72-77
[64] Niakan, S., Niakan, M., Hesaraki, S., Nejadmoghaddam, M. R., Moradi, M., Hanafiabdar, M., ... &Sabouri, M. (2013). Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur Journal of Microbiology, 6(5)
DOI: 10.5812/jjm.8341
[65] Weber, D. J., Anderson, D., &Rutala, W. A. (2013). The role of the surface environment in healthcare-associated infections. Current opinion in infectious diseases, 26(4), 338-344
[66] Weaver, L., Noyce, J. O., Michels, H. T., &Keevil, C. W. (2010). Potential action of copper surfaces on meticillin‐resistant Staphylococcus aureus. Journal of applied microbiology, 109(6), 2200-2205
[67] Salgado, C. D., Sepkowitz, K. A., John, J. F., Cantey, J. R., Attaway, H. H., Freeman, K. D., ... & Schmidt, M. G. (2013). Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. infection control and hospital epidemiology, 34(5), 479-486
DOI: 10.1086/670207
[68] Hans, M., Támara, J. C., Mathews, S., Bax, B., Hegetschweiler, A., Kautenburger, R., ... &Mücklich, F. (2014). Laser cladding of stainless steel with a copper–silver alloy to generate surfaces of high antimicrobial activity. Applied Surface Science, 320, 195-199
[69] Qu, S., Wang, X., Zhang, M., & Zou, Z. (2008). Microstructure and wear properties of Fe–TiC surface composite coating by laser cladding. Journal of materials science, 43(5), 1546-1551
[70] Tao, X. P., Zhang, S., Zhang, C. H., Wu, C. L., Chen, J., & Abdullah, A. O. (2018). Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding. Surface and Coatings Technology, 342, 76-84
[71] Xu, G., Kutsuna, M., Liu, Z., & Yamada, K. (2006). Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel. Surface and Coatings Technology, 201(3-4), 1138-1144
[72] Singh, R., Kumar, D., Mishra, S. K., & Tiwari, S. K. (2014). Laser cladding of Stellite 6 on stainless steel to enhance solid particle erosion and cavitation resistance. Surface and Coatings Technology, 251, 87-97
[73] Jeyaprakash, N., Yang, C. H., & Tseng, S. P. (2019). Wear Tribo-performances of laser cladding Colmonoy-6 and Stellite-6 micron layers on stainless steel 304 using Yb: YAG disk laser. Metals and Materials International, 1-14
[74] Kaul, R., Ganesh, P., Albert, S. K., Jaiswal, A., Lalla, N. P., Gupta, A., ... &Nath, A. K. (2003). Laser cladding of austenitic stainless steel with hardfacing alloy nickel base. Surface engineering, 19(4), 269-273.
[75] Paul, C. P., Gandhi, B. K., Bhargava, P., Dwivedi, D. K., &Kukreja, L. M. (2014). Cobalt-free laser cladding on AISI type 316L stainless steel for improved cavitation and slurry erosion wear behavior. Journal of materials engineering and performance, 23(12), 4463-4471. https://doi.org/10.1007/ s11665-014-1244-9
[76] Feng, J., Ferreira, M. G. S., &Vilar, R. (1997). Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel. Surface and Coatings Technology, 88(1-3), 212-218
[77] Awasthi, R., Limaye, P. K., Kumar, S., Kushwaha, R. P., Viswanadham, C. S., Srivastava, D., ... &Dey, G. K. (2015). Wear characteristics of Ni-based hardfacing alloy deposited on stainless steel substrate by laser cladding. Metallurgical and Materials Transactions A, 46(3), 1237-1252
[78] Zhang, D. W., Lei, T. C., & Li, F. J. (2001). Laser cladding of stainless steel with Ni–Cr3C2 for improved wear performance. Wear, 251(1-12), 1372-1376. https://doi.org/10.1016/S0043-1648 (01)00770-0
[79] Tobar, M. J., Alvarez, C., Amado, J. M., Rodríguez, G., & Yanez, A. (2006). Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surface and Coatings Technology, 200(22-23), 6313-6317
[80] Zhang, S., Zhou, J., Guo, B., Zhou, H., Pu, Y., & Chen, J. (2008). Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Materials Science and Engineering: A, 491(1-2), 47-54
[81] Guo, C., Chen, J., Zhou, J., Zhao, J., Wang, L., Yu, Y., & Zhou, H. (2012). Effects of WC–Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 206(8-9), 2064-2071
[82] He, X. M., Liu, X. B., Wang, M. D., Yang, M. S., Shi, S. H., Fu, G. Y., & Chen, S. F. (2011). Elevated temperature dry sliding wear behavior of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding. Applied surface science, 258(1), 535-541
[83] Jien-Wei, Y. E. H. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
[84] Zhang, H., Pan, Y., & He, Y. Z. (2011). Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Materials & Design, 32(4), 1910-1915
[85] Wu, W., Jiang, L., Jiang, H., Pan, X., Cao, Z., Deng, D., ... & Li, T. (2015). Phase evolution and properties of Al2CrFeNiMo x high-entropy alloys coatings by laser cladding. Journal of Thermal Spray Technology, 24(7), 1333-1340
[86] Zhang, S., Wu, C. L., Zhang, C. H., Guan, M., & Tan, J. Z. (2016). Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Optics & Laser Technology, 84, 23-31
[87] Wen, P., Feng, Z., & Zheng, S. (2015). Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Optics & Laser Technology, 65, 180-188
[88] Sebastiani, M., Mangione, V., De Felicis, D., Bemporad, E., &Carassiti, F. (2012). Wear mechanisms and in-service surface modifications of a Stellite 6B Co–Cr alloy. Wear, 290, 10-17.
[89] Fu, Y., Guo, N., Zhou, C., Wang, G., & Feng, J. (2021). Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment. Journal of Materials Processing Technology, 289, 116949.