[1]
Y. Gogotsi, Nanomaterials Handbook, 2nd ed. CRC Press, 2017.
Google Scholar
[2]
H. Gleiter, "Nanostructured materials: basic concepts and microstructure," Acta Mater., vol. 48, no. 1, p.1–29, 2000.
DOI: 10.1016/S1359-6454(99)00285-2
Google Scholar
[3]
T. Torchynska, B. Perez Millan, E. Velazquez Lozada, M. Kakazey, and M. Vlasova, "Blue emission stimulation in mixture of ZnO and carbon nanocrystals at mechanical processing," ECS Trans., vol. 66, no. 1, p.297–303, 2015.
DOI: 10.1149/06601.0297ecst
Google Scholar
[4]
Z. H. K. Mushahid Husain, Advances in nanomaterials, vol. 4, no. 1. 2013.
Google Scholar
[5]
D. Li et al., "Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods," Appl. Phys. Lett., vol. 85, no. 9, p.1601–1603, 2004.
DOI: 10.1063/1.1786375
Google Scholar
[6]
B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Appl. Phys. Lett., vol. 79, no. 7, p.943–945, 2001.
DOI: 10.1063/1.1394173
Google Scholar
[7]
M. K. Patra, K. Manzoor, M. Manoth, S. R. Vadera, and N. Kumar, "Studies of luminescence properties of ZnO and ZnO:Zn nanorods prepared by solution growth technique," J. Lumin., vol. 128, no. 2, p.267–272, 2008.
DOI: 10.1016/j.jlumin.2007.08.005
Google Scholar
[8]
B. Sathya, D. Benny Anburaj, V. Porkalai, and G. Nedunchezhian, "Raman scattering and photoluminescence properties of Ag doped ZnO nano particles synthesized by sol–gel method," J. Mater. Sci. Mater. Electron., vol. 28, no. 8, p.6022–6032, 2017.
DOI: 10.1007/s10854-016-6278-3
Google Scholar
[9]
I. Shalish, H. Temkin, and V. Narayanamurti, "Size-dependent surface luminescence in ZnO nanowires," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 69, no. 24, p.1–4, 2004.
DOI: 10.1103/PhysRevB.69.245401
Google Scholar
[10]
J. Qiu et al., "The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method," Nanotechnology, vol. 20, no. 15, 2009.
DOI: 10.1088/0957-4484/20/15/155603
Google Scholar
[11]
Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," J. Appl. Phys., vol. 98, no. 4, p.1–103, 2005.
DOI: 10.1063/1.1992666
Google Scholar
[12]
D. K. Hwang, M. S. Oh, J. H. Lim, C. G. Kang, and S. J. Park, "Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO," Appl. Phys. Lett., vol. 90, no. 2, p.9–12, 2007.
DOI: 10.1063/1.2430937
Google Scholar
[13]
A. B. Djuriić, A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. Quantum Electron., vol. 34, no. 4, p.191–259, 2010.
DOI: 10.1016/j.pquantelec.2010.04.001
Google Scholar
[14]
K. Y. Cheong and M. A. Fraga, "Materials Science in Semiconductor Processing: Editorial," Mater. Sci. Semicond. Process., vol. 29, p.1, 2015.
DOI: 10.1016/j.mssp.2014.09.006
Google Scholar
[15]
M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, "Yellow luminescence in ZnO layers grown on sapphire," J. Appl. Phys., vol. 103, no. 10, 2008.
DOI: 10.1063/1.2924437
Google Scholar
[16]
Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, "Deep-level emissions influenced by O and Zn implantations in ZnO," Appl. Phys. Lett., vol. 87, no. 21, p.1–3, 2005.
DOI: 10.1063/1.2135880
Google Scholar
[17]
K. Vanheusden et al., "Mechanisms behind green photoluminescence in ZnO phosphor powders Mechanisms behind green photoluminescence in ZnO phosphor powders," vol. 7983, no. 1996, 2011.
DOI: 10.1063/1.362349
Google Scholar
[18]
M. T. Shabbir et al., "Enhancement in the photocatalytic and optoelectronic properties of erbium oxide by adding zinc oxide and molybdenum," Ceram. Int., vol. 49, no. 12, p.19691–19700, 2023.
DOI: 10.1016/j.ceramint.2023.03.086
Google Scholar
[19]
R. Yatskiv et al., "Defect-mediated energy transfer in ZnO thin films doped with rare-earth ions," J. Lumin., vol. 253, no. March 2022, 2023.
DOI: 10.1016/j.jlumin.2022.119462
Google Scholar
[20]
H. Figiel, O. Zogał, and V. Yartys, "Journal of Alloys and Compounds: Preface," J. Alloys Compd., vol. 404–406, no. SPEC. ISS., p.1, 2005.
DOI: 10.1016/j.jallcom.2005.05.002
Google Scholar
[21]
M. Buryi et al., "Transformation of free-standing ZnO nanorods upon Er doping," Appl. Surf. Sci., vol. 562, no. January, 2021.
DOI: 10.1016/j.apsusc.2021.150217
Google Scholar
[22]
C. Tu, X. Zhang, Y. Ye, H. Zhang, G. Gu, and R. Chen, "Boosting near-infrared photoluminescence efficiency of erbium ions and ZnO quantum dots codoped amorphous silica thin films," Phys. B Condens. Matter, vol. 620, no. June, 2021.
DOI: 10.1016/j.physb.2021.413268
Google Scholar
[23]
V. F. Gremenok, I. I. Tyukhov, N. Akcay, E. P. Zaretskaya, V. V. Khoroshko, and A. N. Pyatlitski, "Characterization of ZnO Films Doped by Erbium," Proc. - ISES Sol. World Congr. 2021, p.82–91, 2021.
DOI: 10.18086/swc.2021.05.02
Google Scholar
[24]
N. Khichar, S. Bishnoi, and S. Chawla, "Introducing dual excitation and tunable dual emission in ZnO through selective lanthanide (Er3+/Ho3+) doping," RSC Adv., vol. 4, no. 36, p.18811–18817, 2014.
DOI: 10.1039/c4ra01248h
Google Scholar
[25]
S. S. A. Rashid, S. H. A. Aziz, K. A. Matori, M. H. M. Zaid, and N. Mohamed, "Comprehensive study on effect of sintering temperature on the physical, structural and optical properties of Er3+ doped ZnO-GSLS glasses," Results Phys., vol. 7, p.2224–2231, 2017.
DOI: 10.1016/j.rinp.2017.04.004
Google Scholar
[26]
M. Buryi et al., "ZnO nanorods alloyed with Mo/Er. The effect of post-deposition treatment on defect states and luminescence," IOP Conf. Ser. Mater. Sci. Eng., vol. 1050, no. 1, 2021.
DOI: 10.1088/1757-899X/1050/1/012002
Google Scholar
[27]
J. El Ghoul and F. F. Al-Harbi, "Synthesis, Structural and Optical Properties of Er and V Codoping ZnO Nanoparticles," J. Inorg. Organomet. Polym. Mater., vol. 31, no. 1, p.272–278, 2021.
DOI: 10.1007/s10904-020-01678-4
Google Scholar
[28]
D. K. Sharma, K. K. Sharma, V. Kumar, and A. Sharma, "Synthesis of Er doped ZnO cone-like nanostructures with enhanced structural, optical and magnetic properties," J. Mater. Sci. Mater. Electron., vol. 29, no. 5, p.3840–3849, 2018.
DOI: 10.1007/s10854-017-8320-5
Google Scholar
[29]
N. K. Divya and P. P. Pradyumnan, "Solid state synthesis of erbium doped ZnO with excellent photocatalytic activity and enhanced visible light emission," Mater. Sci. Semicond. Process., vol. 41, p.428–435, 2016.
DOI: 10.1016/j.mssp.2015.10.004
Google Scholar
[30]
J. Lang et al., "Synthesis and photoluminescence characterizations of the Er3+-doped ZnO nanosheets with irregular porous microstructure," Mater. Sci. Semicond. Process., vol. 41, p.32–37, 2016.
DOI: 10.1016/j.mssp.2015.08.022
Google Scholar
[31]
H. Akazawa and H. Shinojima, "Energy dissipation channels affecting photoluminescence from resonantly excited Er3+ ions doped in epitaxial ZnO host films," J. Appl. Phys., vol. 117, no. 15, p.1–10, 2015.
DOI: 10.1063/1.4918365
Google Scholar
[32]
J. Geng, G. H. Song, and J. J. Zhu, "Sonochemical synthesis of Er3+-doped ZnO nanospheres with enhanced upconversion photoluminescence," J. Nanomater., vol. 2012, p.1–6, 2012.
DOI: 10.1155/2012/317857
Google Scholar
[33]
Z. Pan, "Photoluminescence of Er-doped ZnO nanoparticle films via direct and indirect excitation," J. Nanophotonics, vol. 6, no. 1, p.063508, 2012.
DOI: 10.1117/1.jnp.6.063508
Google Scholar