[1]
B. J. Babalola et al., "Effect of Nanocrystalline Nickel Powder and Co, Mo, Ta, and Al Additions on Isothermal Oxidation Behavior of Ni–17Cr Alloy," Metallography, Microstructure, and Analysis, vol. 9, no. 1, 2020.
DOI: 10.1007/s13632-020-00614-9
Google Scholar
[2]
C. D. Taylor and B. M. Tossey, "High temperature oxidation of corrosion resistant alloys from machine learning," Npj Mater Degrad, vol. 5, no. 1, p.38, Jul. 2021.
DOI: 10.1038/s41529-021-00184-3
Google Scholar
[3]
T. M. Pollock, "Alloy design for aircraft engines," Nat Mater, vol. 15, no. 8, p.809–815, Aug. 2016.
DOI: 10.1038/nmat4709
Google Scholar
[4]
S. Min et al., "High-temperature oxidation performance of Ni-based GH3536 superalloy fabricated by laser powder bed fusion," Npj Mater Degrad, vol. 6, no. 1, p.66, Aug. 2022.
DOI: 10.1038/s41529-022-00276-8
Google Scholar
[5]
B. J. Babalola, S. Salifu, and P. A. Olubambi, "Effect of Mechanical Milling on the Mechanical, Dry Sliding Wear, and Impact Response of Sintered Nickel Based Superalloy," J Mater Eng Perform, 2020.
DOI: 10.1007/s11665-020-05256-0
Google Scholar
[6]
B. J. Babalola, O. O. Ayodele, M. A. Awotunde, S. O. Akinwamide, and P. A. Olubambi, "Microstructure and mechanical properties of Ni-17Cr-xCo ternary alloys fabricated via field-assisted sintering," Mater Lett, vol. 302, p.130404, Nov. 2021.
DOI: 10.1016/j.matlet.2021.130404
Google Scholar
[7]
T. Li et al., "CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy," Acta Mater, vol. 246, p.118728, Mar. 2023.
DOI: 10.1016/j.actamat.2023.118728
Google Scholar
[8]
V. P. Mkhwanazi, B. J. Babalola, O. O. Ayodele, T. Tshephe, and P. A. Olubambi, "Spark Plasma Sintering of TaN/TiAl Composites: Microstructure and Microhardness Study," International Journal of Engineering Research in Africa, vol. 61, p.69–77, Jul. 2022.
DOI: 10.4028/p-87lh6f
Google Scholar
[9]
O. O. Ayodele, B. J. Babalola, and P. A. Olubambi, "Evaluation of the Wear and Mechanical Properties of Titanium Diboride-Reinforced Titanium Matrix Composites Prepared by Spark Plasma Sintering," Materials, vol. 16, no. 5, p.2078, Mar. 2023.
DOI: 10.3390/ma16052078
Google Scholar
[10]
B. J. Babalola, O. O. Ayodele, and P. A. Olubambi, "Sintering of nanocrystalline materials: Sintering parameters," Heliyon, vol. 9, no. 3, p. e14070, Mar. 2023.
DOI: 10.1016/j.heliyon.2023.e14070
Google Scholar
[11]
B. J. Babalola, M. B. Shongwe, B. A. Obadele, and P. A. Olubambi, "Densification, microstructure and mechanical properties of spark plasma sintered Ni-17%Cr binary alloys," International Journal of Advanced Manufacturing Technology, vol. 101, no. 5–8, 2019.
DOI: 10.1007/s00170-018-3062-y
Google Scholar
[12]
A. Graboś et al., "Microstructure and Hardness of Spark Plasma Sintered Inconel 625-NbC Composites for High-Temperature Applications," Materials, vol. 14, no. 16, p.4606, Aug. 2021.
DOI: 10.3390/ma14164606
Google Scholar
[13]
A. S. Hakeem et al., "Comparative evaluation of thermal and mechanical properties of nickel alloy 718 prepared using selective laser melting, spark plasma sintering, and casting methods," Journal of Materials Research and Technology, vol. 12, p.870–881, May 2021.
DOI: 10.1016/j.jmrt.2021.03.043
Google Scholar
[14]
S. Ma, S. Zhou, W. Zhang, S. Wang, and M. Liu, "A facile synthesis of Inconel718-GNSs composites with high strength via spark plasma sintering," J Alloys Compd, vol. 922, p.166270, Nov. 2022.
DOI: 10.1016/j.jallcom.2022.166270
Google Scholar
[15]
E. Martínez-Franco et al., "Mechanical characterization by multiscale indentation of particle reinforced Nickel-Alumina metal matrix nanocomposites obtained by high-kinetic processing of ball milling and spark plasma sintering," J Alloys Compd, vol. 927, p.166880, Dec. 2022.
DOI: 10.1016/j.jallcom.2022.166880
Google Scholar
[16]
W. Li, L. Li, C. Wei, J.-C. Zhao, and Q. Feng, "Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches," J Mater Sci Technol, vol. 80, p.139–149, Jul. 2021.
DOI: 10.1016/j.jmst.2020.10.080
Google Scholar