[1]
O.F. Ogunbiyi, T. Jamiru, E.R. Sadiku, O.T. Adesina, S.A. Salifu, L.W. Beneke, Effect of nickel powder particle size on the microstructure and thermophysical properties of spark plasma sintered NiCrCoAlTiW-Ta superalloy, IOP Conf. Ser. Mater. Sci. Eng. 655 (2019).
DOI: 10.1088/1757-899X/655/1/012031
Google Scholar
[2]
S.H. Kim, G.H. Shin, B.K. Kim, K.T. Kim, D.Y. Yang, C. Aranas, J.P. Choi, J.H. Yu, Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion, Sci. Rep. 7 (2017) 1–14.
DOI: 10.1038/s41598-017-14713-1
Google Scholar
[3]
Q. Jia, D. Gu, Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance, J. Mater. Res. 29 (2014) 1960–1969.
DOI: 10.1557/jmr.2014.130
Google Scholar
[4]
Z. Trojanová, Z. Drozd, P. Lukác, P. Minárik, G. Nemeth, S. Seetharaman, J. Džugan, M. Gupta, Magnesium Reinforced with Inconel 718 Particles. Prepared Ex Situ—Microstructure and Properties, Materials (Basel). 13 (2020). https://doi.org/.
DOI: 10.3390/ma13030798
Google Scholar
[5]
Y. Wang, J. Shi, Y. Wang, Reinforcing inconel 718 superalloy by nano-TiC particles in selective laser melting, ASME 2015 Int. Manuf. Sci. Eng. Conf. MSEC 2015. 2 (2015) 1–8.
DOI: 10.1115/msec2015-9365
Google Scholar
[6]
B.J. Babalola, M.B. Shongwe, S.O. Jeje, A.L. Rominiyi, O.O. Ayodele, P.A. Olubambi, Influence of spark plasma sintering temperature on the densification and micro-hardness behaviour of Ni-Cr-Al alloy, IOP Conf. Ser. Mater. Sci. Eng. 655 (2019) 4195–4206.
DOI: 10.1088/1757-899X/655/1/012032
Google Scholar
[7]
W.S. Ebhota, T. Jen, Intermetallics Formation Their Effect on Mechanical Properties of Al-Si-X Alloys, IntechOpen. (2018).
DOI: 10.5772/intechopen.73188
Google Scholar
[8]
A. Habanyama, C.M. Comrie, Inter-Diffusion of Nickel and Palladium Germanium, IntechOpen. (2018).
DOI: 10.5772/intechopen.73190
Google Scholar
[9]
M. Ishaq, R. Basariya, K. Mukhopadhyay, Structural Structural and Mechanical Behaviour of Al-Fe Intermetallics, IntechOpen. (2018).
DOI: 10.5772/intechopen.73944
Google Scholar
[10]
T. Czeppe, S. Wierzbinski, Structure and mechanical properties of NiAl and Ni3 Al-based alloys, Int. J. Mech. Sci. 42 (2000). https://doi.org/doi.org/.
DOI: 10.1016/S0020-7403(99)00087-9
Google Scholar
[11]
R. Darolia, NiAI Alloys for High Temperature Structural Applications, J. Mater. Sci. 10 (2000).
DOI: 10.1520/MPC20200183
Google Scholar
[12]
Ł. Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, M. Szlezynger, Microstructure and Mechanical Properties of Al–Co–Cr–Fe–Ni Base High Entropy Alloys Obtained Using Powder Metallurgy, Met. Mater. Int. 25 (2019) 930–945.
DOI: 10.1007/s12540-018-00236-5
Google Scholar
[13]
X. Yin, S. Xu, Properties and Preparation of High Entropy Alloys, MATEC Web Conf. 142 (2018) 1–5.
DOI: 10.1051/matecconf/201714203003
Google Scholar
[14]
M.H. Tsai, (Review) Physical Properties of High Entropy Alloys, Entropy. 15 (2014) 5338–5345.
DOI: 10.3390/e15125338
Google Scholar
[15]
Y. Zhang, T. Beijing, T.T. Zuo, T. Beijing, P. Liaw, High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep. 3 (2013) 1455.
DOI: 10.1038/srep01455
Google Scholar
[16]
R.N. Rajan, S. Rajendran, A.A. Nagar, High entropy alloys and corrosion resistance Section B-Review High Entropy Alloys And Corrosion Resistance – A Bird ' S Eye View High Entropy Alloys And Corrosion Resistance – A Bird ' S Eye View, Eur. Chem. Bull. 3 (2014) 1031–1035. https://doi.org/https://www.researchgate.net/publication/282913403 High.
DOI: 10.1021/acsami.1c25079.s001
Google Scholar
[17]
Y. Qiu, M.A. Gibson, H.L. Fraser, N. Birbilis, M.A. Gibson, H.L. Fraser, N.B. Corrosion, Y. Qiu, M.A. Gibson, H.L. Fraser, N. Birbilis, Corrosion characteristics of high entropy alloys Corrosion characteristics of high entropy alloys, Mater. Sci. Technol. 0836 (2016).
DOI: 10.1179/1743284715Y.0000000026
Google Scholar
[18]
Y. Shi, B. Yang, P.K. Liaw, Corrosion-Resistant High-Entropy Alloys : A Review, Metals (Basel). 43 (2017) 1–18.
DOI: 10.3390/met7020043
Google Scholar
[19]
D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy. 16 (2014) 494–525.
DOI: 10.3390/e16010494
Google Scholar
[20]
D.B. Miracle, Critical Assessment 14 : High entropy alloys and their development as structural materials, Mater. Sci. Technol. 31 (2015).
DOI: 10.1179/1743284714Y.0000000749
Google Scholar
[21]
Y. Zhang, T. Ting, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z. Ping, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[22]
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, J. Sci. 345 (2014) 1153–1158.
DOI: 10.1126/science.1254581
Google Scholar
[23]
H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Fundamental deformation behavior in high-entropy alloys : An overview, Curr. Opin. Solid State Mater. Sci. (2017).
DOI: 10.1016/j.cossms.2017.08.003
Google Scholar
[24]
W. Li, P.K. Liaw, Y. Gao, Fracture resistance of high entropy alloys : A review, Intermetallics. 99 (2018) 69–83.
DOI: 10.1016/j.intermet.2018.05.013
Google Scholar
[25]
J. Fayomi, A.P. Popoola, O. Popoola, V. Aigbodon, O. Agboola, The spark plasma sintering of the optimized parametric process for the magnesium alloy reinforced hybrid nano ‑ ceramics, Int. J. Adv. Manuf. Technol. (2022).
DOI: 10.1007/s00170-022-10617-1
Google Scholar
[26]
H. Liu, L. Liu, C. Xin, Effect of alloying elements on the structure and mechanical properties of NbMoTaWX ( X = Cr , V , Ti , Zr , and Hf ) refractory high- entropy alloys Effect of alloying elements on the structure and mechanical properties of NbMoTaWX ( X = Cr , V , Ti , Zr, J. Appl. Phys. 025044 (2021).
DOI: 10.1063/5.0038405
Google Scholar
[27]
C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd. 475 (2009) 752–757.
DOI: 10.1016/j.jallcom.2008.07.124
Google Scholar
[28]
J. Fayomi, A.P.I. Popoola, O.M. Popoola, The performance of hybridized nano-ceramics on the microstructure and corrosion of Mg alloy in an auto-engine cooling system, Ceram. Int. (2022).
DOI: 10.1016/j.ceramint.2022.12.102
Google Scholar
[29]
T. Lu, X. Shi, J. Li, S. Bai, H. Liu, H. Luo, Magnetic properties and possible martensitic transformation in equiatomic quaternary Heusler alloy CoMnNiSn, J. Magn. Magn. Mater. 562 (2022) 169844.
DOI: 10.1016/j.jmmm.2022.169844
Google Scholar
[30]
P.L. Yan, J.M. Zhang, K.W. Xu, The structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn, Solid State Commun. 231–232 (2016) 64–67.
DOI: 10.1016/j.ssc.2016.02.006
Google Scholar
[31]
J. Yang, C. Liang, C. Wang, J. Huang, B. Qiu, M. Liang, W. Liu, Y. Xie, K. Zhang, S. Zhou, Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening, Mater. Des. 222 (2022) 111061.
DOI: 10.1016/j.matdes.2022.111061
Google Scholar
[32]
R. Muthuraj, M. Misra, A.K. Mohanty, Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers, Fourteenth, Elsevier Ltd., 2015.
DOI: 10.1016/B978-1-78242-373-7.00014-7
Google Scholar
[33]
M. Wang, H. Cui, Y. Zhao, C. Wang, N. Wei, Y. Zhao, X. Zhang, Q. Song, A simple strategy for fabrication of an FCC-based complex concentrated alloy coating with hierarchical nanoprecipitates and enhanced mechanical properties, Mater. Des. 180 (2019) 107893.
DOI: 10.1016/j.matdes.2019.107893
Google Scholar
[34]
C. Aguilar, C. Martinez, K. Tello, S. Palma, A. Delonca, F. San Martín, I. Alfonso, Thermodynamic analysis of the formation of FCC and BCC solid solutions of ti-based ternary alloys by mechanical alloying, Metals (Basel). 10 (2020).
DOI: 10.3390/met10040510
Google Scholar
[35]
William F. Hosford, Mechanical Behavior Of Materials, 2nd editio, Cambridge University Press, New york city united States of America, 2010.
Google Scholar
[36]
M. Meyers, A., K. Chawla, M., Mechanical behavior of materials, Second Edi, Cambridge University Press 2009. ISBN-13 978-0-511-45557-5.
DOI: 10.5860/choice.46-6830
Google Scholar
[37]
M.F. Ashby, D.R.H. Jones. Engineering Materials 2; An Introduction to Microstructures and Processing, Second Edi, Elsevier Inc., 2013.
DOI: 10.1016/b978-0-08-096668-7.00005-x
Google Scholar
[38]
D. Hull, D.J. Bacon, Introduction to Dislocations, Fifth Edi, Elsevier Inc., 2011
DOI: 10.1016/C2009-0-64358-0
Google Scholar
[39]
A.E.A. Al-maamari, A.A. Iqbal, D.M. Nuruzzaman, Mechanical and tribological characterization of self-lubricating Mg-SiC-Gr hybrid metal matrix composite (MMC) fabricated via mechanical alloying, J. Sci. Adv. Mater. Devices. 5 (2020) 535–544.
DOI: 10.1016/j.jsamd.2020.09.002
Google Scholar
[40]
A. Abbas, S.J. Huang, Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites, Mater. Sci. Eng. A. 780 (2020) 139211.
DOI: 10.1016/j.msea.2020.139211
Google Scholar
[41]
N.K. Bhoi, H. Singh, S. Pratap, M. Gupta, P.K. Jain, Investigation on the combined effect of ZnO nanorods and Y2O3 nanoparticles on the microstructural and mechanical response of aluminium, Adv. Compos. Mater. 31 (2022) 289–310. https://doi.org/.
DOI: 10.1080/09243046.2021.1993555
Google Scholar
[42]
A. Ghasemi, D. Penther, S. Kamrani, Microstructure and nanoindentation analysis of Mg-SiC nanocomposite powders synthesized by mechanical milling, Mater. Charact. 142 (2018) 137–143.
DOI: 10.1016/j.matchar.2018.05.023
Google Scholar
[43]
N.M. Kumar, L.A. Kumaraswamidhas, Characterization and tribological analysis on AA 6061 reinforced with AlN and ZrB 2 in situ composites, J. Mater. Res. Technol. 8 (2019) 969–980.
DOI: 10.1016/j.jmrt.2018.07.008
Google Scholar
[44]
M.R. Mattli, P.R. Matli, A. Khan, R.H. Abdelatty, M. Yusuf, A. Al Ashraf, R.G. Kotalo, R.A. Shakoor, Study of microstructural and mechanical properties of al/sic/tio2 hybrid nanocomposites developed by microwave sintering, Crystals. 11 (2021).
DOI: 10.3390/cryst11091078
Google Scholar
[45]
S. Thomas, V. Umasankar, Influence of MWCNT on Precipitation Hardenable Aluminium Alloy Matrix on Age Hardening and Solutionizing, Adv. Sci. Lett. 24 (2018) 5805–5811.
DOI: 10.1166/asl.2018.12200
Google Scholar
[46]
V. Yadav, S.P. Harimkar, Microstructure and properties of spark plasma sintered carbon nanotube reinforced aluminum matrix composites, Adv. Eng. Mater. 13 (2011) 1128–1134.
DOI: 10.1002/adem.201100132
Google Scholar
[47]
P.R. Matli, F. Ubaid, R.A. Shakoor, G. Parande, V. Manakari, M. Yusuf, A.M. Amer Mohamed, M. Gupta, Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process, RSC Adv. 7 (2017) 34401–34410.
DOI: 10.1039/c7ra04148a
Google Scholar
[48]
J. Sun, Z. Yang, J. Han, T. Yuan, D. Song, Y. Wu, Y. Yuan, X. Zhuo, H. Liu, A. Ma, Enhanced quasi-isotropic ductility in bi-textured AZ91 Mg alloy processed by up-scaled RD-ECAP processing, J. Alloys Compd. 780 (2019) 443–451.
DOI: 10.1016/j.jallcom.2018.12.008
Google Scholar
[49]
H. Liao, J. Chen, L. Peng, J. Han, H. Yi, F. Zheng, Y. Wu, W. Ding, Fabrication and characterization of magnesium matrix composite processed by combination of friction stir processing and high-energy ball milling, Mater. Sci. Eng. A. 683 (2017) 207–214.
DOI: 10.1016/j.msea.2016.11.104
Google Scholar