Enhanced Microhardness and Corrosion Performance of Additively Manufactured Inconel 718 Specimens through Nanostructuring by Severe Plastic Deformation

Article Preview

Abstract:

Severe plastic deformation (SPD) processes, particularly high-pressure torsion (HPT) have been increasingly applied to metallic specimens fabricated by laser powder bed fusion (L-PBF) additive manufacturing (AM) for enhancing their mechanical and functional properties through nanoscale grain refinement (≤ 100 nm). In this study. L-PBF AM-fabricated Inconel 718 (IN 718) specimens are initially subjected to 10 HPT revolutions to produce nanosized grains. Subsequently, microstructural characterisation, as well as hardness and electrochemical tests are conducted to evaluate the evolution of microstructures, hardness, and corrosion performance of the as-received and HPT-processed specimens by using various microscopy, Vickers microhardness (HV) measurements, and corrosion performance, respectively. The results reveal an average grain size of ~ 46 nm, dense dislocation networks, and nanotwins after 10 HPT processing, which contribute to the two-fold hardness increase compared to the as-received condition. Such microstructures also contributed to the overall improved corrosion performance after 10 HPT processing, as quantified by the 83% and 73% reduction in corrosion rate and pitting potential, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1116)

Pages:

27-34

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res. 46 (2016) 151–186.

DOI: 10.1146/annurev-matsci-070115-032024

Google Scholar

[2] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev. 61 (2016) 1–46.

DOI: 10.1080/09506608.2015.1116649

Google Scholar

[3] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[4] R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. H??ppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, The innovation potential of bulk nanostructured materials, Adv. Eng. Mater. 9 (2007) 527–533.

DOI: 10.1002/adem.200700078

Google Scholar

[5] T.G. Langdon, Processing of ultrafine-grained materials using severe plastic deformation: Potential for achieving exceptional properties, Rev. Metal. 44 (2008) 556–564.

DOI: 10.3989/revmetalm.0838

Google Scholar

[6] R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (2004) 511–516.

DOI: 10.1038/nmat1180

Google Scholar

[7] K. Edalati, Z. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A. 652 (2016) 325–352.

DOI: 10.1016/j.msea.2015.11.074

Google Scholar

[8] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, Achieving homogeneity in a Cu-Zr alloy processed by high-pressure torsion, J. Mater. Sci. 47 (2012) 7782–7788.

DOI: 10.1007/s10853-012-6587-8

Google Scholar

[9] K. Edalati, M. Ashida, Z. Horita, T. Matsui, H. Kato, Wear resistance and tribological features of pure aluminum and Al-Al2O3 composites consolidated by high-pressure torsion, Wear. 310 (2014) 83–89.

DOI: 10.1016/j.wear.2013.12.022

Google Scholar

[10] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[11] S. Mohd Yusuf, Y. Chen, S. Yang, N. Gao, Microstructural evolution and strengthening of selective laser melted 316L stainless steel processed by high-pressure torsion, Mater. Charact. 159 (2020) 110012.

DOI: 10.1016/j.matchar.2019.110012

Google Scholar

[12] S. Mohd Yusuf, Y. Chen, N. Gao, Influence of High-Pressure Torsion on the Microstructure and Microhardness of Additively Manufactured 316L Stainless Steel, Metals (Basel). 11 (2021) 1–12.

DOI: 10.3390/met11101553

Google Scholar

[13] A. Hosseinzadeh, A. Radi, J. Richter, T. Wegener, S.V. Sajadifar, T. Niendorf, G.G. Yapici, Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys, J. Manuf. Process. 68 (2021) 788–795.

DOI: 10.1016/j.jmapro.2021.05.070

Google Scholar

[14] P. Snopiński, K. Matus, F. Tatiček, S. Rusz, Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing, J. Alloys Compd. 918 (2022).

DOI: 10.1016/j.jallcom.2022.165817

Google Scholar

[15] K.S. Mukhtarova, R. V. Shakhov, V. V. Smirnov, S.K. Mukhtarov, Microstructure and microhardness studies of Inconel 718, manufactured by selective laser melting and subjected to severe plastic deformation and annealing, IOP Conf. Ser. Mater. Sci. Eng. 672 (2019).

DOI: 10.1088/1757-899x/672/1/012049

Google Scholar

[16] Y. Huang, T.G. Langdon, The evolution of delta-phase in a superplastic Inconel 718 alloy, J. Mater. Sci. 42 (2007) 421–427.

DOI: 10.1007/s10853-006-0483-z

Google Scholar

[17] S.Mohd Yusuf, N. Mazlan, N.H. Musa, X. Zhao, Y. Chen, S. Yang, N.A. Nordin, S.A. Mazlan, N. Gao, Microstructures and Hardening Mechanisms of a 316L Stainless Steel/Inconel 718 Interface Additively Manufactured by Multi-Material Selective Laser Melting, Met. MDPI. 13 (2023) 1–21.

DOI: 10.3390/met13020400

Google Scholar

[18] J. Zhang, N. Gao, M.J. Starink, Al-Mg-Cu based alloys and pure Al processed by high pressure torsion: The influence of alloying additions on strengthening, Mater. Sci. Eng. A. 527 (2010) 3472-3479.

DOI: 10.1016/j.msea.2010.02.016

Google Scholar

[19] A. Thorvaldsen, The intercept method—1. Evaluation of grain shape, Acta Mater. 45 (1997) 587–594.

DOI: 10.1016/s1359-6454(96)00197-8

Google Scholar

[20] G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum, Philos. Mag. 1 (1956) 34-46.

DOI: 10.1080/14786435608238074

Google Scholar

[21] W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment, Mater. Sci. Eng. A. 689 (2017) 220–232.

DOI: 10.1016/j.msea.2017.02.062

Google Scholar

[22] M.S. Pham, B. Dovgyy, P.A. Hooper, Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing, Mater. Sci. Eng. A. 704 (2017) 102–111.

DOI: 10.1016/j.msea.2017.07.082

Google Scholar

[23] G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, INCONEL 718: A solidification diagram, Metall. Trans. A. 20 (1989) 2149–2158.

DOI: 10.1007/bf02650300

Google Scholar

[24] X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A. 540 (2012) 1–12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar

[25] S. Scheriau, Z. Zhang, S. Kleber, R. Pippan, Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion, Mater. Sci. Eng. A. 528 (2011) 2776–2786.

DOI: 10.1016/j.msea.2010.12.023

Google Scholar

[26] W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, X. Liao, Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion, Sci. Rep. 7 (2017) 1–13.

DOI: 10.1038/srep46720

Google Scholar

[27] H.E. Helmer, C. Körner, R.F. Singer, Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure, J. Mater. Res. 29 (2014) 1987–1996.

DOI: 10.1557/jmr.2014.192

Google Scholar

[28] M. Munther, T. Palma, F. Tavangarian, A. Beheshti, K. Davami, Nanomechanical properties of additively and traditionally manufactured nickel-chromium-based superalloys through instrumented nanoindentation, Manuf. Lett. 23 (2020) 39–43.

DOI: 10.1016/j.mfglet.2019.09.003

Google Scholar

[29] X. Sauvage, S. Mukhtarov, Microstructure evolution of a multiphase superalloy processed by severe plastic deformation, IOP Conf. Ser. Mater. Sci. Eng. 63 (2014).

DOI: 10.1088/1757-899x/63/1/012173

Google Scholar

[30] ASTM, ASTM G 102-89: Standard Practice for Calculation of Corrosion Rates and Related Information, 1999.

Google Scholar

[31] S. Mohd Yusuf, M. Nie, Y. Chen, S. Yang, N. Gao, Microstructure and corrosion performance of 316L stainless steel fabricated by Selective Laser Melting and processed through high-pressure torsion, J. Alloys Compd. 763 (2018) 360–375.

DOI: 10.1016/j.jallcom.2018.05.284

Google Scholar

[32] K.D. Ralston, N. Birbilis, Effect of grain size on corrosion, Corrosion. 66 (2010) 1–4.

Google Scholar

[33] X. Wang, M. Nie, C.T. Wang, S.C. Wang, N. Gao, Microhardness and corrosion properties of hypoeutectic Al-7Si alloy processed by high-pressure torsion, Mater. Des. 83 (2015) 193–202.

DOI: 10.1016/j.matdes.2015.06.018

Google Scholar