Processing Maps and Optimized Plastic Behavior Model of TC4 Titanium Alloy Diffusion Bonded Joint at α+β Region Temperatures

Article Preview

Abstract:

The hot processing maps and optimized Arrhenius constitutive model of the TC4 diffusion bonded joint were investigated based on high temperature tensile tests in the temperature range of 1024–1174 K and strain rate range of 0.0001–0.1 s–1. The optimal hot processing parameter in the tensile deformation mode was 0.0001–0.001 s–1/1124 K and 0.0001–0.1 s–1/1174 K, respectively, when the true strain was 0.2. A modified strain compensated Arrhenius-type constitutive model of the joint by combining the evolutionary algorithm and generalized reduced gradient was established. The values of correlation coefficient and average absolute relative error were 0.989 and 7.29%, respectively, indicating the good prediction capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1116)

Pages:

35-41

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Wang, M.H. Chen, L.S. Xie, Hot flow behavior characterization for predicting the titanium alloy TC4 hollow blade surface sinkage defects in the SPF/DB process, Int J Mater Form. 12(2019) 827–844.

DOI: 10.1007/s12289-018-1454-z

Google Scholar

[2] K. Chandrappa, C.S. Sumukha, B.B. Sankarsh, R. Gowda, Superplastic forming with diffusion bonding of titanium alloys, Materials Today: Proceedings. 27(2020) 2909–2913.

DOI: 10.1016/j.matpr.2020.03.514

Google Scholar

[3] O. Lypchanskyi, T. Leboda, A. Ukaszek-soek, K. zygua, M. wojtaszek, Application of the strain compensation model and processing maps for description of hot deformation behavior of metastable β titanium alloy, Materials. 14(2021).

DOI: 10.3390/ma14082021

Google Scholar

[4] S. Yang, H. Li, J. Luo, Y.G. Liu, M.Q. Li, Prediction model for flow stress during isothermal compression in α + β phase field of TC4 alloy, Rare Metals. 37(2018) 369–375.

DOI: 10.1007/s12598-018-1012-3

Google Scholar

[5] J.L Liu, W.D. Zeng, Y.J. Xie, Y. Shu, J.C. Yang, Constitutive model of TC4-DT titanium alloy at elevated temperature considering compensation of strain, Rare Metal Materials and Engineering. 44(2015) 2742–2746.

Google Scholar

[6] Y. Xu, X.J. Yang, Y. He, D.N. Du, Flow softening behavior and constitutive equation of TC4 titanium alloy during hot deformation, Rare Metal Materials and Engineering. 46(2017) 1321–1326.

Google Scholar

[7] Y.V.R.K. Prasad, T. Seshacharyulu, Processing maps for hot working of titanium alloys, Materials Science and Engineering A. 243(1998) 82–88.

DOI: 10.1016/s0921-5093(97)00782-x

Google Scholar

[8] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K, Prasad. Hot working of commercial Ti-6Al-4V with an equiaxed a-β microstructure: materials modeling considerations, Materials Science and Engineering A. 284(2000) 184–194.

DOI: 10.1016/s0921-5093(00)00741-3

Google Scholar

[9] X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao, Z.K. Yao, Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map, Materials Science and Engineering A. 605(2014) 80–88.

DOI: 10.1016/j.msea.2014.03.047

Google Scholar

[10] X.W. Yang, Y.Y. Wang, X.R. Dong, C. Peng, B.J. Ji, Y.X. Xu, W.Y. Li, Hot deformation behavior and microstructure evolution of the laser solid formed TC4 titanium alloy, Chinese Journal of Aeronautics. 34(2021) 163–182.

DOI: 10.1016/j.cja.2020.07.036

Google Scholar

[11] M.O. Bodunrin, L.H. Chown, J.W. van der Merwe, K.K Alaneme, Hot working of Ti-6Al-4V with a complex initial microstructure, International Journal of Material Forming. 12(2019) 857–874.

DOI: 10.1007/s12289-018-1457-9

Google Scholar

[12] H.P. Wu, X.F. Li, Q.F. Mei, J. Chen, G.H. Wu, A flow behavior of diffusion bonding interface of Ti6Al4V alloy over a wide range of strain rates, Materials Science and Engineering A. 761(2019).

DOI: 10.1016/j.msea.2019.138067

Google Scholar

[13] C. Li, I. Sardar Muhammad, L.H. Lang, Y.J. Guo, X.X. Li, S. Alexandrova, D.X. Zhang, Hot deformation behavior and strain compensation constitutive model of equiaxed fine grain diffusion-welded micro-duplex TC4 titanium alloy, Chinese Journal of Aeronautics. 36(2023) 510–522.

DOI: 10.1016/j.cja.2022.07.025

Google Scholar

[14] Y.Y. Zong, F.C. Xu, D.B. Shan, B. Guo, Y.C. Liang, Influence of grain size on high-temperature compression flow behaviors of TC4 titanium alloy, Material Science and Technology. 18(2010) 302–306.

Google Scholar

[15] Y.L. Zhu, Y. Cao, Q.B. He, J.K. Zhang, R. Luo, H.S. Di, G.J. Huang, Q. Liu, Three-dimensional hot processing map of a nickel-based superalloy (Alloy 925) established by modified artificial neural network model, Intermetallics. 141(2022).

DOI: 10.1016/j.intermet.2021.107433

Google Scholar

[16] X.J. Lin, H.J. Huang, X.G. Yuan, Y.X. Wang, B.W. Zheng, X.J. Zuo, G. Zhou, Establishment and validity verification of the hot processing map of a Ti-47.5Al-2.5V–1.0Cr-0.2Zr alloy with a lamellar microstructure, Materials Characterization. 183(2022).

DOI: 10.1016/j.matchar.2021.111599

Google Scholar

[17] C.M. Sellars, W.J. Mctegart, On the mechanism of hot deformation, Acta Metallurgica. 14(1966) 1136–1138.

DOI: 10.1016/0001-6160(66)90207-0

Google Scholar

[18] C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel, Journal of Applied Physics. 15(1944) 22–32.

DOI: 10.1063/1.1707363

Google Scholar

[19] I. Sardar Muhammad, C. Li, L.H. Lang, Y.J. Guo, H.A. Mirza, F. Haq, S. Alexandrova, J. Jiang, H.J. Han, An investigation into Arrhenius type constitutive models to predict complex hot deformation behavior of TC4 alloy having bimodal microstructure, Materials Today Communications. 31(2022).

DOI: 10.1016/j.mtcomm.2022.103622

Google Scholar