Strain Sensing Enhancement of 3D-printed Polyurethane through Surface Deposition of Carbon Black

Article Preview

Abstract:

Strain sensors for wearable electronics function by identifying mechanical deformations and translating into electrical signals. For optimal performance, electrical conductivity, electrical sensitivity, and flexibility are major properties of strain sensors. Polyurethane (PU) shows promise for custom strain sensors due to its high flexibility. Additionally, using digital light processing (DLP) 3D printing to shape PU is suitable for detecting body movements. Therefore, the aim of this study is developing 3D-printed PU to strain sensing devices, utilizing the surface coating method on 3D-printed PU with carbon black (CB) and polydimethylsiloxane (PDMS) to fabricate the (PDMS+CB)/CB/PU strain sensor. The conductive network of CB enhances sensitivity, while PDMS is incorporated to act as an adhesive for the durability of CB on the PU surface. The results of the experiment reveal a gauge factor of 6.04 with range from 1 to 10% elongation. The strain sensor of this study has high potential to use for strain sensing technology and is capable of detecting small body movements.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1128)

Pages:

45-50

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.-J. Zhu, P.-G. Ren, H. Guo, Y.-L. Jin, D.-X. Yan, and Z.-M. Li: ACS Appl. Mater. Interfaces vol. 11 (2019), no. 26, pp.23649-23658

DOI: 10.1021/acsami.9b08611

Google Scholar

[2] L. Duan, D. R. D'hooge, and L. Cardon: Prog. Mater. Sci vol. 114 (2020), p.100617

Google Scholar

[3] M. Amjadi, K. U. Kyung, I. Park, and M. Sitti: Adv. Funct. Mater vol. 26 (2016), no. 11, pp.1678-1698

Google Scholar

[4] N. Poompiew, P. Pattananuwat, C. Aumnate, A. J. Román, T. A. Osswald, and P. Potiyaraj: J. Sci.: Adv. Mater. Devices vol. 8 (2023), no. 2, p.100546

DOI: 10.1016/j.jsamd.2023.100546

Google Scholar

[5] S. K. Gulrez et al.: Polym.Compos vol. 35 (2014), no. 5, pp.900-914

Google Scholar

[6] H. Liu et al.: J. Mater. Chem. C vol. 6 (2018), no. 45, pp.12121-12141

Google Scholar

[7] Z. Zhang et al.: Appl. Compos. Mater vol. 29 (2022), no. 3, pp.1235-1248

Google Scholar

[8] L. Lin et al.: Nano Mater Sci (2022)

Google Scholar

[9] S. Li, R. Xu, J. Wang, Y. Yang, Q. Fu, and C. Pan: J. Colloid Interface Sci vol. 617 (2022), pp.372-382

Google Scholar

[10] M.-Y. Liu et al.: Appl.Mater. Today vol. 37 (2024), p.102099

Google Scholar

[11] Y. Huang et al.: Sens. Rev vol. 39 (2019), no. 2, pp.233-245

Google Scholar

[12] S. Cao et al.: Polym. J vol. 49 (2017), no. 11, pp.775-781

Google Scholar