Polyol Synthesis of Bimetallic FePt Nanoparticles over h-BN Substrate

Article Preview

Abstract:

Hexagonal boron nitride (h-BN) is a promising support for the deposition of functional metallic nanoparticles for next generation of catalysts. Multicomponent metallic NPs, such as bimetallic FePt NPs, are attracting much attention as catalytically active sites because their properties can be superior to their single-element counterpart. To achieve the best catalytic properties, careful control of the chemical composition of the bimetallic NPs on the surface of h-BN substrates is necessary. Herein we report the development of a polyol synthesis protocol that elucidates the relationship between the initial and resulting Fe:Pt molar ratio in a FePt/h-BN material. TEM, STEM, EDXS, BET and BJH methods were utilized to characterize the surface and structure of the h-BN support and FePt/h-BN heterostructures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1128)

Pages:

51-56

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.S. Idris, A. Roy, Synthesis of Bimetallic Nanoparticles and Applications—An Updated Review, Crystals. 13 (2023) 637.

DOI: 10.3390/cryst13040637

Google Scholar

[2] S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han, L. Lei, X. Zhang, R. Shahbazian-Yassar, J. Lu, Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis, Nat Commun. 11 (2020) 2016.

DOI: 10.1038/s41467-020-15934-1

Google Scholar

[3] A.G. Díez, M. Rincón-Iglesias, S. Lanceros-Méndez, J. Reguera, E. Lizundia, Multicomponent magnetic nanoparticle engineering: the role of structure-property relationship in advanced applications, Materials Today Chemistry. 26 (2022) 101220.

DOI: 10.1016/j.mtchem.2022.101220

Google Scholar

[4] G. Feng, F. Ning, J. Song, H. Shang, K. Zhang, Z. Ding, P. Gao, W. Chu, D. Xia, Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution, J. Am. Chem. Soc. 143 (2021) 17117–17127.

DOI: 10.1021/jacs.1c07643

Google Scholar

[5] A.S. Konopatsky, K.L. Firestein, N.D. Evdokimenko, A.L. Kustov, V.S. Baidyshev, I.V. Chepkasov, Z.I. Popov, A.T. Matveev, I.V. Shetinin, D.V. Leybo, I.N. Volkov, A.M. Kovalskii, D. Golberg, D.V. Shtansky, Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights, Journal of Catalysis. 402 (2021) 130–142.

DOI: 10.1016/j.jcat.2021.08.026

Google Scholar

[6] M. Ha, J.-H. Kim, M. You, Q. Li, C. Fan, J.-M. Nam, Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures, Chem. Rev. 119 (2019) 12208–12278.

DOI: 10.1021/acs.chemrev.9b00234

Google Scholar

[7] M. Binandeh, Performance of unique magnetic nanoparticles in biomedicine, European Journal of Medicinal Chemistry Reports. 6 (2022) 100072.

DOI: 10.1016/j.ejmcr.2022.100072

Google Scholar

[8] B. Sravani, P. Raghavendra, Y. Chandrasekhar, Y. Veera Manohara Reddy, R. Sivasubramanian, K. Venkateswarlu, G. Madhavi, L. Subramanyam Sarma, Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction, International Journal of Hydrogen Energy. 45 (2020) 7680–7690.

DOI: 10.1016/j.ijhydene.2019.02.204

Google Scholar

[9] L. Chen, B.-Y. He, S. He, T.-J. Wang, C.-L. Su, Y. Jin, Fe―Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism, Powder Technology. 227 (2012) 3–8.

DOI: 10.1016/j.powtec.2011.11.030

Google Scholar

[10] S. Ammar, F. Fiévet, Polyol Synthesis: A Versatile Wet-Chemistry Route for the Design and Production of Functional Inorganic Nanoparticles, Nanomaterials. 10 (2020) 1217.

DOI: 10.3390/nano10061217

Google Scholar

[11] A.S. Konopatsky, K.L. Firestein, D.V. Leybo, E.V. Sukhanova, Z.I. Popov, X. Fang, A.M. Manakhov, A.M. Kovalskii, A.T. Matveev, D.V. Shtansky, D.V. Golberg, Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation, Catalysis Science & Technology. 9 (2019) 6460–6470.

DOI: 10.1039/C9CY01464K

Google Scholar

[12] S. Sargazi, M.R. Hajinezhad, A. Rahdar, M. Mukhtar, M. Karamzadeh-Jahromi, M. Almasi-Kashi, S. Alikhanzadeh-Arani, M. Barani, F. Baino, CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies, Appl. Phys. A. 127 (2021) 772.

DOI: 10.1007/s00339-021-04917-8

Google Scholar

[13] A. Santoveña-Uribe, J. Maya-Cornejo, D. Bahena, J. Ledesma, R. Pérez, R. Esparza, Synthesis and Characterization of AgPd Bimetallic Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction, Electrocatalysis. 11 (2020) 536–545.

DOI: 10.1007/s12678-020-00613-y

Google Scholar

[14] C.A. Rodríguez-Proenza, J.P. Palomares-Báez, M.A. Chávez-Rojo, A.F. García-Ruiz, C.L. Azanza-Ricardo, A. Santoveña-Uribe, G. Luna-Bárcenas, J.L. Rodríguez-López, R. Esparza, Atomic Surface Segregation and Structural Characterization of PdPt Bimetallic Nanoparticles, Materials. 11 (2018) 1882.

DOI: 10.3390/ma11101882

Google Scholar

[15] R. Justin Joseyphus, K. Shinoda, D. Kodama, B. Jeyadevan, Size controlled Fe nanoparticles through polyol process and theirmagnetic properties, Materials Chemistry and Physics. 123 (2010) 487-493.

DOI: 10.1016/j.matchemphys.2010.05.001

Google Scholar