Impact of Pre-Silica-Coating on the Luminescence Properties of Silica-Coated Indium Phosphide Nanoparticles

Article Preview

Abstract:

This study examined the impact of silica-coating on the luminescence characteristics of indium phosphide (InP) nanoparticles. Silica-coated InP nanoparticles were prepared using three different techniques. The first method utilized tetraethoxysilane (TEOS) as the silica source, resulting in the encapsulation of multiple InP nanoparticles within silica spheres. This approach caused a red-shift in the luminescence peak wavelength of the InP colloidal solution post-TEOS coating, compared to the original InP colloidal solution. Conversely, the second method employed tetramethoxysilane (TMOS), resulting in the formation of irregularly shaped silica-coatings on multiple InP nanoparticles, which reduced the red-shift in the luminescence peak wavelength of the silica-coated InP colloidal solution. The third method involved pre-coating InP nanoparticles with TMOS, followed by thickening the silica shells using TEOS. This technique successfully encapsulated multiple InP nanoparticles within silica spheres, maintaining the luminescence peak wavelength of the InP colloid solution post-coating with TMOS and TEOS nearly identical to that of the original solution. This method merged the advantageous outcomes of the first two methods. Additionally, silica spheres containing InP nanoparticles synthesized using both TMOS and TEOS exhibited the highest luminescence intensity. In summary, this study introduces a novel approach in nanoparticle engineering, enhancing the functional properties of InP nanoparticles and expanding their potential applications in optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1128)

Pages:

31-38

Citation:

Online since:

October 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hu, X. Hu, G. Wang, Y. Cheng, X. Yu, X. Huang, A fluorescent lateral flow immunoassay based on CdSe/CdS/ZnS quantum dots for sensitive detection of olaquindox in feedstuff, Food Chem., 419 (2023) 136025.

DOI: 10.1016/j.foodchem.2023.136025

Google Scholar

[2] G. Devatha, S. Roy, A. Rao, A. Mallick, S. Basu, P. P. Pillai, Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots, Chem. Sci., 8 (2017) 3879-3884.

DOI: 10.1039/c7sc00592j

Google Scholar

[3] M. Noh, T. Kim, H. Lee, C.-K. Kim, S.-W. Joo, K. Lee, Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots, Colloids Surf. A Physicochem., 359 (2010) 39-44.

DOI: 10.1016/j.colsurfa.2010.01.059

Google Scholar

[4] S. Yamashita, M. Hamada, S. Nakanishi, H. Saito, Y. Nosaka, S. Wakida, V. Biju, Auger Ionization Beats Photo-Oxidation of Semiconductor Quantum Dots: Extended Stability of Single-Molecule Photoluminescence, Angew. Chem. Int. Ed., 23 (2023) 3892-3896.

DOI: 10.1002/anie.201501131

Google Scholar

[5] K. Cendrowski, P. Sikora, B. Zielinska, E. Horszczaruk, E. Mijowska, Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica, Appl. Surf. Sci., 407 (2017) 391-397.

DOI: 10.1016/j.apsusc.2017.02.118

Google Scholar

[6] M.A. Malvindi, V. Brunetti, G. Vecchio, A. Galeone, R. Cingolani P. P. Pompa, SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing, Nanoscale, 4 (2012) 486-495.

DOI: 10.1039/c1nr11269d

Google Scholar

[7] L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir, 12 (1996) 4329-4335.

DOI: 10.1021/la9601871

Google Scholar

[8] S.Winardi, L. Qomariyah, W. Widiyastuti, K. Kusdianto, T. Nurtono, S. Madhania, The role of electro-sprayed silica-coated zinc oxide nanoparticles to hollow silica nanoparticles for optical devices material and their characterization, Colloids Surf. A Physicochem., 604 (2020) 125327.

DOI: 10.1016/j.colsurfa.2020.125327

Google Scholar

[9] K.-P. Chang, C.-J. Wu, C.-W. Lo, Y.-S. Lin, C.-C. Yen, D.-S. Wuu, Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays, Mater. Sci. Semicond. Process., 148 (2022) 106799.

DOI: 10.1016/j.mssp.2022.106790

Google Scholar

[10] Y. Kobayashi, H. Inose, T. Nakagawa, K. Gonda, M. Takeda, N. Ohuchi, A. Kasuya, Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties, J. Colloid Interface Sci., 358 (2011) 329-333.

DOI: 10.1016/j.jcis.2011.01.058

Google Scholar

[11] Y. Kobayashi, M. Horie, M. Konno, B. R.-González, L. M. L.-Marzán, Preparation and Properties of Silica-Coated Cobalt Nanoparticles, J. Phys. Chem., 107 (2003) 7420-7425.

DOI: 10.1021/jp027759c

Google Scholar

[12] Y. Kobayashi, K. Misawa, M. Takeda, M. Kobayashi, M. Satake, Y. Kawazoe, N. Ohuchi, A. Kasuya, M. Konno, Silica-coating of AgI semiconductor nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 251 (2004) 197-201.

DOI: 10.1016/j.colsurfa.2004.10.007

Google Scholar

[13] Y. Kobayashi, K. Misawa, M. Kobayashi, M. Takeda, M. Konno, Silica-coating of fluorescent polystyrene microspheres by a seeded polymerization technique and their photo-bleaching property, Colloids Surf. A Physicochem. Eng. Asp., 242 (2004) 47-52.

DOI: 10.1016/j.colsurfa.2004.04.052

Google Scholar

[14] M. Yokokawa, T.-t. Li, M. Kambayashi, K. Nakashima, Y. Hirayama, H. Okura, M. Hasegawa, S. Dertinger, Y. Kobayashi, Silica-coating of quantum nanorods by a sol–gel process and their photo-bleaching properties, J. Solgel Sci. Technol., 86 (2018) 773-781.

DOI: 10.1007/s10971-018-4674-2

Google Scholar

[15] M. Kambayashi, N. Yamauchi, K. Nakashima, M. Hasegawa, Y. Hirayama, T. Suzuki, Y. Kobayashi, Silica coating of indium phosphide nanoparticles by a sol-gel method and their photobleaching properties, SN Appl. Sci., 1576 (2019).

DOI: 10.1007/s42452-019-1635-5

Google Scholar

[16] W. Sung, Y.-L. Lo, Ammonia vapor sensor based on CdSe/SiO2core–shell nanoparticles embedded in sol-gel matrix, Sens. Actuators B Chem., 188 (2013) 702-708.

DOI: 10.1016/j.snb.2013.07.040

Google Scholar

[17] T.N.M. Bernards, M.J. van Bommel, A.H. Boonstra, J. Non Cryst. Solids, 134 (1991) 1-13.

Google Scholar

[18] R. Koole, P. Liljeroth, C. M. Donegá, D. Vanmaekelbergh, A. Meijerink, Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules, J. Am. Chem. Soc., 32 (2006) 10436-10441.

DOI: 10.1021/ja061608w

Google Scholar

[19] Y. Zhang, L. Mi, P.-N. Wang, J. Ma, J.-Y. Chen, pH-dependent aggregation and photoluminescence behavior of thiol-capped CdTe quantum dots in aqueous solutions, J. Lumin., 128 (2008) 1948-1951.

DOI: 10.1016/j.jlumin.2008.06.004

Google Scholar

[20] T.Ung, L. M. L.-Marzán, P. Mulvaney, Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions, Langmuir 14 (1998) 3740-3748.

DOI: 10.1021/la980047m

Google Scholar

[21] W. Stober, A. Fink, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 26 (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar