Strengthening and Toughening Simulation Analysis of the Two-Phase Microstructures with Different Patterns

Article Preview

Abstract:

This study investigates two-dimensional composites with Cu/Ni laminated and brick-mortar structures using the GTN constitutive model and mathematical plane tessellation schemes. Uniaxial and biaxial stretching behaviors are analyzed by precisely controlling the model microgeometries through finite element numerical simulations. The results indicate that the laminated structure, represented by triangular tessellation models, exhibits stretching-dominated deformation when uniaxial stretching is applied along the direction of the hard phase laminae, demonstrating exceptional strength. In contrast, the brick-mortar structure, also represented by triangular tessellation models, undergoes deformation through a combination of bending and stretching (compression), enhancing plasticity while maintaining significant strength. By examining the relationship between microstructure and mechanical properties in these two-phase composites, this study provides valuable insights for material synthesis through structural patterning.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1136)

Pages:

41-50

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10 (2011) 817-822.

Google Scholar

[2] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites - a review, Int. Mater. Rev. 55 (2010) 41-64.

DOI: 10.1179/095066009x12572530170543

Google Scholar

[3] P.J. Withers, M. Preuss, Fatigue and damage in structural materials studied by X-ray tomography, Annual Review of Materials Research. 42 (2012) 81-103.

DOI: 10.1146/annurev-matsci-070511-155111

Google Scholar

[4] Z.W. Ma, Y. Ren, R.G. Li, Y.D. Wang, L.L. Zhou, X.L. Wu, Y.J. Wei, H.J. Gao, Cryogenic temperature toughening and strengthening due to gradient phase structure, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 712 (2018) 358-364.

DOI: 10.1016/j.msea.2017.11.107

Google Scholar

[5] Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins, Nat. Commun. 5 (2014) 3580.

DOI: 10.1038/ncomms4580

Google Scholar

[6] S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature. 544 (2017) 460-464.

DOI: 10.1038/nature22032

Google Scholar

[7] S.H. Kim, H. Kim, N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature. 518 (2015) 77-79.

DOI: 10.1038/nature14144

Google Scholar

[8] Y. Jiao, L.J. Huang, T.B. Duan, S.L. Wei, B. Kaveendran, L. Geng, Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites, Sci Rep. 6 (2016) 10.

DOI: 10.1038/srep32991

Google Scholar

[9] S. Tammas-Williams, I. Todd, Design for additive manufacturing with site-specific properties in metals and alloys, Scr. Mater. 135 (2017) 105-110.

DOI: 10.1016/j.scriptamat.2016.10.030

Google Scholar

[10] Z.Y. Liu, K. Ma, G.H. Fan, K. Zhao, J.F. Zhang, B.L. Xiao, Z.Y. Ma, Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation, Carbon. 157 (2020) 602-613.

DOI: 10.1016/j.carbon.2019.10.080

Google Scholar

[11] M.Y. Zhang, N. Zhao, Q. Yu, Z.Q. Liu, R.T. Qu, J. Zhang, S.J. Li, D.C. Ren, F. Berto, Z.F. Zhang, R.O. Ritchie, On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures, Nat. Commun. 13 (2022) 13.

DOI: 10.1038/s41467-022-30873-9

Google Scholar

[12] R.P. Wilkerson, B. Gludovatz, J. Watts, A.P. Tomsia, G.E. Hilmas, R.O. Ritchie, A study of size effects in bioinspired, "nacre-like", metal-compliant phase (nickel-alumina) coextruded ceramics, Acta Mater. 148 (2018) 147-155.

DOI: 10.1016/j.actamat.2018.01.046

Google Scholar

[13] E. Lin, Y.N. Li, C. Ortiz, M.C. Boyce, 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior, J. Mech. Phys. Solids. 73 (2014) 166-182.

DOI: 10.1016/j.jmps.2014.08.011

Google Scholar

[14] Y.M. Zhang, H.M. Yao, C. Ortiz, J.Q. Xu, M. Dao, Bio-inspired interfacial strengthening strategy through geometrically interlocking designs, J. Mech. Behav. Biomed. Mater. 15 (2012) 70-77.

DOI: 10.1016/j.jmbbm.2012.07.006

Google Scholar

[15] X. Gao, X. Zhang, X., M. Qian, F., A. Li, B., L. Geng, H. Peng, X., Development of Finite Element Modeling Technique for Metal Matrix Composites with Tailored Architectures, Mater. China. 39 (2020) 13.

Google Scholar

[16] Y.F. Sun, Y. Chen, N. Tsuji, S. Guan, Microstructural evolution and mechanical properties of nanostructured Cu/Ni multilayer fabricated by accumulative roll bonding, J. Alloy. Compd. 819 (2020) 10.

DOI: 10.1016/j.jallcom.2019.152956

Google Scholar

[17] Y.C. Wang, F. Liang, H.F. Tan, B. Zhang, G.P. Zhang, Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 714 (2018) 43-48.

DOI: 10.1016/j.msea.2017.12.097

Google Scholar

[18] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol.-Trans. ASME. 99 (1977) 2-15.

DOI: 10.2172/7351470

Google Scholar

[19] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract. 17 (1981) 389-407.

DOI: 10.1007/bf00036191

Google Scholar

[20] V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract. 18 (1982) 237-252.

DOI: 10.1007/bf00015686

Google Scholar

[21] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica. 32 (1984) 157-169.

DOI: 10.1016/0001-6160(84)90213-x

Google Scholar

[22] G. Branko, G. Shephard, 1987. Tilings and Patterns, New York.

Google Scholar

[23] V.S. Deshpande, M.F. Ashby, N.A. Fleck, Foam topology bending versus stretching dominated architectures, Acta Mater. 49 (2001) 1035-1040.

DOI: 10.1016/s1359-6454(00)00379-7

Google Scholar

[24] Y. Kim, Y. Kim, F. Libonati, S. Ryu, Designing tough isotropic structural composite using computation, 3D printing and testing, Compos. Pt. B-Eng. 167 (2019) 736-745.

DOI: 10.1016/j.compositesb.2019.03.039

Google Scholar