Exploring Peculiar Properties of Graded Rubber

Article Preview

Abstract:

A styrene-butadiene rubber having a gradient crosslink density in the thickness direction was simply prepared by vulcanizing under a temperature gradient to study its mechanical properties and swelling behavior. The graded rubber exhibited considerable strain recovery after stress removal despite having a low crosslinked part. Notably, the graded rubber also manifested greater hysteresis loss during cyclic test compared to a homogeneously crosslinked rubber, even though they had similar initial moduli. Furthermore, anomalous swelling behavior was observed in the graded rubber. The graded rubber exhibited shape transformation upon swelling. The mechanism was thoroughly explained using gel swelling theory under constraints. This must be a common phenomenon in graded rubbers with a crosslink gradient in the thickness direction. This comprehensive research provides a novel approach for material design with tailored properties and promising applications for this potential material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1139)

Pages:

79-86

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Varghese, T. Johnson, S.S. Bhagawan, S. Joseph, S. Thomas, G. Groeninckx, Dynamic mechanical behavior of acrylonitrile butadiene rubber/poly(ethylene-co-vinyl acetate) blends, J. Polym. Sci., Part B: Polym. Phys. 40(15) (2002) 1556-1570.

DOI: 10.1002/polb.10204

Google Scholar

[2] S.K. Sahoo, S. Mohanty, S.K. Nayak, Toughened bio-based epoxy blend network modified with transesterified epoxidized soybean oil: synthesis and characterization, RSC Advances 5(18) (2015) 13674-13691.

DOI: 10.1039/c4ra11965g

Google Scholar

[3] M. Yamaguchi, H. Miyata, Strain Hardening Behavior in Elongational Viscosity for Binary Blends of Linear Polymer and Crosslinked Polymer, Polym. J. 32(2) (2000) 164-170.

DOI: 10.1295/polymj.32.164

Google Scholar

[4] M. Yamaguchi, S. Ono, M. Terano, Self-repairing property of polymer network with dangling chains, Mater. Lett. 61(6) (2007) 1396-1399.

DOI: 10.1016/j.matlet.2006.07.039

Google Scholar

[5] M. Yamaguchi, S. Ono, K. Okamoto, Interdiffusion of dangling chains in weak gel and its application to self-repairing material, Mater. Sci. Eng. B 162(3) (2009) 189-194.

DOI: 10.1016/j.mseb.2009.04.006

Google Scholar

[6] D. Gennes, Scaling concepts in polymer physics, Cornell University Press, 2-4 Brook Stress, London, 1979.

Google Scholar

[7] C. Fradet, F. Lacroix, G. Berton, S. Méo, E. Le Bourhis, Instrumented indentation of an elastomeric material, protocol and application to vulcanization gradient, Polym. Test. 81 (2020) 106278.

DOI: 10.1016/j.polymertesting.2019.106278

Google Scholar

[8] X. Lv, Z. Huang, C. Huang, M. Shi, G. Gao, Q. Gao, Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials, Compos. B Eng. 88 (2016) 139-149.

DOI: 10.1016/j.compositesb.2015.10.040

Google Scholar

[9] M. Guvendiren, J.A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients, Soft Matter 6(22) (2010) 5795-5801.

DOI: 10.1039/c0sm00317d

Google Scholar

[10] S. Li, W. Yang, Fabrication of poly(acrylamide) hydrogels with gradient crosslinking degree via photoinitiation of thick polymer system, Polym. Adv. Technol. 22(10) (2011) 1442-1445.

DOI: 10.1002/pat.1623

Google Scholar

[11] W. Fan, C. Shan, H. Guo, J. Sang, R. Wang, R. Zheng, K. Sui, Z. Nie, Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials, Sci. Adv. 5(4) (2019) eaav7174.

DOI: 10.1126/sciadv.aav7174

Google Scholar

[12] Y. Ikeda, Preparation and properties of graded styrene-butadiene rubber vulcanizates, 40(4) (2002) 358-364.

DOI: 10.1002/polb.10096

Google Scholar

[13] Y. Ikeda, Graded styrene-butadiene rubber vulcanizates, J. Appl. Polym. Sci. 87(1)(2003)61-67.

DOI: 10.1002/app.11670

Google Scholar

[14] Q.-V. Do, T. Kida, M. Yamaguchi, K. Washizu, T. Nagase, T. Tada, Anomalous Strain Recovery after Stress Removal of Graded Rubber, Polymers, 2022.

DOI: 10.3390/polym14245477

Google Scholar

[15] Q.-V. Do, M. Yamaguchi, K. Washizu, T. Mabuchi, T. Tada, Hysteresis manifestation of graded rubber, Polym. Adv. Technol. 35(1) (2024) e6216.

DOI: 10.1002/pat.6216

Google Scholar

[16] T.-T. Yang, Y. Shui, C.-S. Wei, L.-Z. Huang, C.-W. Yang, G.-A. Sun, J.-J. Han, J.-Z. Xu, Z.-M. Li, D. Liu, Effect of cyclic straining with various rates on stress softening/hysteresis and structural evolution of filled rubber: A time-resolved SANS study, Compos. B Eng. 242 (2022) 110100.

DOI: 10.1016/j.compositesb.2022.110100

Google Scholar

[17] E. Coquelle, G. Bossis, Mullins effect in elastomers filled with particles aligned by a magnetic field, Int. J. Solids Struct. 43(25) (2006) 7659-7672.

DOI: 10.1016/j.ijsolstr.2006.03.020

Google Scholar

[18] J. Diani, B. Fayolle, P. Gilormini, A review on the Mullins effect, Eur. Polym. J. 45(3) (2009) 601-612.

DOI: 10.1016/j.eurpolymj.2008.11.017

Google Scholar

[19] F. Bueche, Molecular basis for the Mullins effect, J. Appl. Polym. Sci. 4(10) (1960) 107-114.

Google Scholar

[20] L. Mullins, Permanent set in vulcanized rubber, Rubber Chem. Technol. 22(4) (1949) 1036-1044.

DOI: 10.5254/1.3543010

Google Scholar

[21] J. Diani, M. Brieu, P. Gilormini, Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material, International Journal of Solids Structures 43(10) (2006) 3044-3056.

DOI: 10.1016/j.ijsolstr.2005.06.045

Google Scholar

[22] P.J. Flory, Principles of polymer chemistry, Ithaca : Cornell University Press, 1953.1953.

Google Scholar

[23] P.J. Flory, J. Rehner, Jr., Statistical Mechanics of Cross‐Linked Polymer Networks II. Swelling, J. Chem. Phys. 11(11) (1943) 521-526.

DOI: 10.1063/1.1723792

Google Scholar

[24] T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase transition, Nature 325(6107) (1987) 796-798.

DOI: 10.1038/325796a0

Google Scholar

[25] W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct. 46(17) (2009) 3282-3289.

DOI: 10.1016/j.ijsolstr.2009.04.022

Google Scholar

[26] Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction, Int. J. Solids Struct. 50(3) (2013) 578-587.

DOI: 10.1016/j.ijsolstr.2012.10.022

Google Scholar

[27] F. Weiss, S. Cai, Y. Hu, M. Kyoo Kang, R. Huang, Z. Suo, Creases and wrinkles on the surface of a swollen gel, J. Appl. Phys. 114(7) (2013) 073507.

DOI: 10.1063/1.4818943

Google Scholar