Degradation of Pipeline Steel’s Strength under High Temperature and Load due to Cavity Formation

Article Preview

Abstract:

The study aims to determine the load contributes to changes in the tensile strength of steel P22 at high temperatures. The steel sample was loaded under 95 and 125 N at a temperature of 700 °C for 72 hours. The results showed that the strength of P22 decreased with increasing load. At the temperature of 700 °C, the yield strength (YS) value decreased from 200 to 182 MPa and the ultimate tensile strength (UTS) reduced from 353 to 321 MPa as the load increased from 95 to 125 N. The precipitation of carbide in the matrix of P22 was observed in the steel sample loaded under 125 N at 700 °C for 72 hours. Furthermore, the cavity formation located on the boundary and near the carbide was confirmed when the temperature was 700 °C and the load increased from 95 to 125 N. The cavity was proof of a stress increase near the grain boundary, causing a decrease in the steel’s strength after a certain period of working time at high temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1140)

Pages:

13-18

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Rhode, J. Nietzke, T. Richter, T. Mente, P. Mayr, A. Nitsche, Hydrogen effect on mechanical properties and cracking of creep-resistant 9% Cr P92 steel and P91 weld metal, Weld World, 67 (2023) 183-194.

DOI: 10.1007/s40194-022-01410-5

Google Scholar

[2] P. Duan, Z. D. Liu, B. Li, J. Y. Li, X. Q. Tao, Study on microstructure and mechanical properties of P92 steel after high-temperature, High Temp. Mater. Process., 39 (2020) 545-555.

DOI: 10.1515/htmp-2020-0087

Google Scholar

[3] T.H. Nguyen, C.S Nguyen, T.T.H. Phung, A.H. Bui, Effect of temperature on mechanical properties of steel P22 subjected to a constant tensile stress, J. Sci. Technol. Metal., 93 (2020) 2-6.

Google Scholar

[4] A. Zielinski, G. Golanski, M. Sroka, Assessment of microstructure stability and mechanical properties of X10CrWMo-VNb9-2 (P92) steel after long-term thermal ageing for high temperature applications, Kovove Mater., 54 (2016) 61-70.

DOI: 10.4149/km_2016_1_61

Google Scholar

[5] S. Fujibayashi, T. Endo, Effect of carbide morphology on the susceptibility to type IV cracking of a 1.25Cr–0.5Mo steel, ISIJ Int., 43 (2003) 790-797.

DOI: 10.2355/isijinternational.43.790

Google Scholar

[6] K. Ankit, Remaining creep life assessment techniques based on creep cavitation modelling, Metall. Mater. Trans. A, 40 (2009) 1013-1018.

DOI: 10.1007/s11661-009-9781-9

Google Scholar

[7] A.K. Ray, K. Diwakar, B. N. Prasad, Y. N. Tiwari, R. N. Ghosh, J. D. Whittenberger, Long term creep-rupture behavior of 813K exposed 2.25Cr-1Mo steel between 773 and 873 K, Mater. Sci. Eng. A, 454 (2007) 124-131.

DOI: 10.1016/j.msea.2006.11.020

Google Scholar

[8] F. Abe, Research and Development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above, Engineering, 1 (2015) 211-224.

DOI: 10.15302/j-eng-2015031

Google Scholar

[9] C. Y. Chi, H. Y. Yu, J. X. Dong, W. Q. Liu, S. C. Cheng, Z. D. Liu, X. S. Xie, The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application, Prog. Nat. Sci., 22 (2012) 175-185.

DOI: 10.1016/j.pnsc.2012.05.002

Google Scholar

[10] B.J. Smith and A.R. Marder, A metallurgical mechanism for corrosion-fatigue (circumferential) crack initiation and propagation in Cr-Mo boiler tube steels, Mater. Charact., 33 (1994) 45-50.

DOI: 10.1016/1044-5803(94)90057-4

Google Scholar

[11] K. Kucharova, V. Sklenicka, M. Kvapilova, M. Svoboda, Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23), Mater. Charact., 109 (2015) 1-8.

DOI: 10.1016/j.matchar.2015.08.008

Google Scholar

[12] V. Lazic, D. Milosavljevic, S. Aleksandrovic, P. Marinkovic, G. Bogdanovic, B. Nedeljkovic, Carbide type influence on tribological properties of hard faced steel layer (Part I: Theoretical Considerations), Tribol. Ind., 32 (2010) 11-20.

Google Scholar

[13] M. Godec and D. A. S. Balantic, Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures, Sci. Rep., 6 (2016) 29734.

DOI: 10.1038/srep29734

Google Scholar

[14] J. Purbolaksono, J. Ahmad, A. Z. Rashid, A. Khinani, A. A. Ali, Failure analysis on a primary super-heater tube of a power plant, Eng. Fail. Anal., 17 (2010) 158-167.

DOI: 10.1016/j.engfailanal.2009.04.017

Google Scholar

[15] J. Z. Wang, Z. D. Liu, H. S. Bao, S. C. Cheng, B. Wang, Effect of ageing at 700 °C on microstructure and mechanical properties of S31042 heat resistant steel, J. Iron Steel Res. Int., 20 (2013) 54-58.

DOI: 10.1016/s1006-706x(13)60082-5

Google Scholar

[16] Z. F Hu, Heat-resistant Steels, Microstructure evolution and life assessment in power plants, mohammad Rasul (Ed.), Thermal power plants; Publisher InTech, Shanghai. (2012) 195-226.

DOI: 10.5772/26766

Google Scholar

[17] D. R. H. Jones, Creep failures of overheated boiler, super-heater and reformer tubes, Eng. Fail. Anal., 11 (2004) 873-893.

DOI: 10.1016/j.engfailanal.2004.03.001

Google Scholar

[18] M. E. Kassner, T. A. Hayea, Creep cavitation in metals, Int. J. Plast., 19 (2003) 1715-1748.

Google Scholar