Study of Special Cements Based on Calcium and Barium Ferrites

Article Preview

Abstract:

Pelletising, i.e. transformation of fine dusty materials into lump materials (pellets, briquettes, pellets), is an important technical task solved in many sectors of the national economy - ferrous and non-ferrous metallurgy, chemical industry and in a number of other industries. The process of pelletising ores and ore concentrates is of the greatest importance for the production of iron and steel, i.e. for ferrous metallurgy. The most common method of pelletising is pelletising - granulation of iron ore concentrates in special granulation plants, usually with the use of binders. As a result of pelletising, so-called pellets are produced, which are subjected to hardening firing (roasting pellets) or achieve the required level of properties without high-temperature treatment (non-roasting pellets) through the use of special binders. The current trend is the transition from firing methods of pellet hardening to non-firing (low-temperature) methods.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1140)

Pages:

63-72

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[2] Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode, In Materials Science Forum, 1038 (2021) pp.514-523.

DOI: 10.4028/www.scientific.net/msf.1038.514

Google Scholar

[3] Y. Danchenko, V. Andronov, E. Barabash, T. Obigenko, E. Rybka, R. Meleshchenko, A. Romin, Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides, Eastern-European Journal of Enterprise Technologies, 6 (12–90) (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[4] A. Pilipenko, H. Pancheva, A. Reznichenko, O. Myrgorod, N. Miroshnichenko, A. Sincheskul, The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide, Eastern-European Journal of Enterprise Technologies, 2 (1–85) (2017) 21–28.

DOI: 10.15587/1729-4061.2017.95989

Google Scholar

[5] Kovalov, A., Otrosh, Y., Kovalevska, T., & Safronov, S. Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings, In  Materials Science and Engineering. IOP Publishing, 708 (1) (2019) p.012058.

DOI: 10.1088/1757-899x/708/1/012058

Google Scholar

[6] Yu. Otrosh, M. Surianinov, O. Holodnov, O. Starova, Experimental and computer researches of ferroconcrete beams at high-temperature influences, Materials Science Forum, 968 (2019) 355–360.

DOI: 10.4028/www.scientific.net/msf.968.355

Google Scholar

[7] Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., & Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (119)) (2022) 53–61.

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[8] Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., & Venzhego, G. Methodology for Calculating the Technical State of a Reinforced-Concrete Fragment in a Building Influenced by High Temperature. Materials Science Forum, 1006 (2020)166–172.

DOI: 10.4028/www.scientific.net/msf.1006.166

Google Scholar

[9] G. Shabanova, O. Myrgorod, O. Pyrohov, O. Murashko, Barium aluminates and the study of their basic thermodynamic data, 2840(1) (2023) 020007.

DOI: 10.1063/5.0167753

Google Scholar

[10] O. Mirgorod, G. Shabanova, A. Ruban, V. Shvedun, Experiment Planning for Prospective Use of Barium-Containing Alumina Cement for Refractory Concrete Making, In Materials Science Forum. Trans Tech Publications Ltd, 1038 (2021) 330-335.

DOI: 10.4028/www.scientific.net/msf.1038.330

Google Scholar

[11] J. Borim, Modelagem e controle de um processo de endurecimento de pelotas de minério de ferro [dissertation], Belo Horizonte: Universidade Federal de Minas Gerais, (2000).

DOI: 10.33425/2693-1516.1017

Google Scholar

[12] L.Y. Dworkin, Building binders, Rivne, 2019.

Google Scholar

[13] Z. Klimenko, N. Petrovska, B. Fedun, Special cements for pelletising metallurgical raw materials, Bulletin of Lviv Polytechnic Institute, 111 (1977) P. 48-50.

Google Scholar

[14] V. Taranenkova, Ye. Ivchenko, M. Lisyutkina, S. Linnik, Investigation of the regularity of manifestation of binding properties by ferrites of alkaline-earth elements using the concept of electronegativity S.S. Batsanova, Modern technologies of refractory non-metallic and silicate materials: II International Conf. of Students, Postgraduates and Young Scientists, Kharkiv : NTU «KhPI» (2011) P. 45-46.

Google Scholar

[15] G. Sloccari, E. Luсchini, Subsolidus phase relationships in the system BaO-CaO-Fe2O3, Ceramurgia Int., V.3, № 1 (1977) P. 10-12.

DOI: 10.1016/0390-5519(77)90100-4

Google Scholar

[16] O. Borisenko, S. Logvinkov, G. Shabanova, O. Myrgorod, Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2, Materials Science Forum, 1038 (2021) 177-184.

DOI: 10.4028/www.scientific.net/msf.1038.177

Google Scholar

[17] V. Deyneka, G. Shabanova, V. Taranenkova, Estimation of liquidus surfaces of binary and ternary sections of the system CaO – BaO – Fe2O3. Vestnik of NTU «KhPI», Kharkiv, 25 (2005), P. 105-108.

Google Scholar

[18] V. Tokarchuk, L. Nudchenko, Yu. Kovalenko, Technology of special binding materials and products based on them, teaching. manual for students specialty Chemical technologies and engineering, Kyiv, KPI named after Igor Sikorskyi, 2022.

Google Scholar

[19] L.Y. Dworkin, Properties of mineral building materials: teaching. Manual, Rivne: NUVHP, 2019.

Google Scholar

[20] L.Y. Dworkin, S.D. Lapovska, Construction materials science: Textbook, Rivne: NUVHP, 2016.

Google Scholar

[21] V. Kazimirov, E. Rusanov, Radiography of crystalline materials: ed. manual, K., Kyiv University of the Orthodox Church, 2016.

Google Scholar

[22] E. Solovyova, E. Pashkova, Y. Gomza, Influence of synthesis conditions on the fractal structure and properties of nanodispersed barium hexaferrite, Ukrainian Chemical Journal, T. 76, No. 3, (2010) P. 30-35.

Google Scholar

[23] S.I. Pinpchuk, Solid State Chemistry (short course): textbook, Kyiv, Artek Publishing House, 2018.

Google Scholar

[24] M. Bulzan, E. Segal, The influence of Fe2O3 on the thermal stability of BaCO3. Rev. Roum. Chim. V. 21, № 5(1976) P. 651-653.

Google Scholar

[25] V. Vlkov, А. Deneva, D. Stavrakeva, Phase studies of barium ferrites in the high-base part of the system BaO – Fe2O3, Stavrakeva Building materials and silicate industry, 20, № 2 (1979) P. 3-5.

Google Scholar