Bioplastic Properties of Cassava Peel Starch (Manihot esculenta) Influenced by the Addition of Crab Shell Chitosan and Zinc Oxide (ZnO)

Article Preview

Abstract:

Cassava shell starch and crab shell chitosan can be used as basic for bioplastics with glycerol and additives such as zinc oxide (ZnO) to improve their mechanical properties. This study used the variables of ZnO percentage and crab shell chitosan mass, which has never been done before. This research process was carried out in several stages, the first was bioplastic synthesis using cassava shell starch, glycerol, and crab shell chitosan with variations of 1 g and 1.5 g with zinc oxide (ZnO) of 3% and 5% of the total mass of starch. The limitations of the research are that the thickness of the tensile test samples is only 0.1-1 mm and the method for making bioplastics is the solution casting method. The second stage is characterization using FTIR to analyze the functional groups of cassava peel starch. Next, observe the morphology on the sample surface using an optical microscope, then a tensile test is carried out to calculate the tensile strength value using the ASTM D882 standard. The results of this research show that the highest tensile strength value for the 1.5 g chitosan and 5% ZnO variation was 10,353 MPa, while the lowest was for the 1 g chitosan and 3% ZnO variation at 4,526 MPa. The elongation value obtained was the highest in the variation of 1.5 g of chitosan and 3% zinc oxide at 10.508%. Meanwhile, the lowest ductility value was found in specimens with variations of 1 g of chitosan and 5% zinc oxide, amounting to 6.716%. The level of water resistance from the swelling test was found to be the highest with the 1.5 g chitosan and 5% zinc oxide variation with water absorption of 23.14%, however, the highest water absorption of 39.36% was obtained with the 1 gr chitosan and zinc oxide variation 3%. Optical microscope testing on the surface of samples of variations of 1.5 g chitosan and 5% zinc oxide showed the best physical properties. Therefore, the addition of reinforcement in the form of chitosan and zinc oxide affects the tensile strength value of the bioplastic film, where the higher the amount of reinforcement used, the higher the strength value produced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1140)

Pages:

75-84

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sasria, R.T. Jayanti, N.R.M. Aras, M.A. Fitrah, Y. Malik, H.H. Utami, A.P. Putra, F.D.I. Sawali, Mustofa, I. Siregar, M.A. Albar, Pengetahuan bahan, CV. Mitra Mandiri Persada – Surabaya, 2023, p.164.

Google Scholar

[2] N. Sasria, V.N. Afifah, G.U.N. Tajalla: submitted to Makara Journal of Science (2023).

Google Scholar

[3] Zaenab, N. Sasria, M.P.D. Lubis, Pengaruh carboxymethyl cellulose terhadap sifat bioplastik berbasis tandan kosong kelapa sawit dan plasticizer gliseroL, Alchemy: Journal of Chemistry. 11 (2023) 25-31.

DOI: 10.18860/al.v11i2.20389

Google Scholar

[4] Y. Darni, T.M. Sitorus, M. Hanif, Thermoplastic processing of sorghum and cellulose to produce bioplastics, Jurnal Rekayasa Kimia dan Lingkungan. 10 (2014) 55–62.

DOI: 10.23955/rkl.v10i2.2420

Google Scholar

[5] H. Zhuang, M.M. Barth, L. Cisneros-Zevallos, Modified atmosphere packaging for fresh fruits and vegetables, in: Innovations in Food Packaging: second ed., Elsevier Ltd., 2013, p.445–473.

DOI: 10.1016/b978-0-12-394601-0.00018-7

Google Scholar

[6] A. Alfiani, N. Sasria, M.P.D. Lubis, Pengaruh carboxymethyl celullose terhadap karakteristik bioplastik menggunakan tandan kosong kelapa sawit dan pati ampas tahu, Jurnal Integrasi Proses. 12 (2023) 12-16.

DOI: 10.36055/jip.v12i1.18932

Google Scholar

[7] Z. Zhang, O. Ortiz, R. Goyal, J. Kohn, Biodegradable polymers, in: Handbook of Polymer Applications in Medicine and Medical Devices, Elsevier Inc., 2014, p.303–335.

DOI: 10.1016/b978-0-323-22805-3.00013-x

Google Scholar

[8] N. Sasria, Meliana, Y. Triana, A.W.Y.P. Parmita: submitted to the 8th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM) (2022).

Google Scholar

[9] N. Sasria, V.N. Afifah, A. Alfiani, M.P.D. Lubis, G.U.N. Tajalla, Pengaruh jenis pati dan variasi komposisi plasticizer terhadap karakteristik bioplastik berbasis selulosa dari tandan kosong kelapa sawit (TKKS), PT. Nasya Expanding Management – Pekalongan, 2024, p.84.

DOI: 10.36055/jip.v12i1.18932

Google Scholar

[10] H. Abral, A. Basri, F. Muhammad, Y. Fernando, F. Hafizulhaq, M. Mahardika, E. Sugiarti, S.M. Sapuan, R.A. Ilyas, I. Stephane, A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment, Food Hydrocolloids. 93 (2019) 276–283.

DOI: 10.1016/j.foodhyd.2019.02.012

Google Scholar

[11] N. Sasria, O. Tang, H.A. Dewanto: submitted to International and National Seminar on Materials and Metallurgical Engineering in Borneo (2023).

Google Scholar

[12] B. Thapa, R. Narain, Mechanism, current challenges and new approaches for nonviral gene delivery, in: Polymers and Nanomaterials for Gene Therapy, Elsevier Ltd., 2016.

DOI: 10.1016/b978-0-08-100520-0.00001-1

Google Scholar

[13] E.O. Ningrum, L. Ardiani, N.A. Rohmah, N. Fajar, Modifikasi biokomposit kitosan dari cangkang rajungan (portunus pelagicus) dan pektin untuk aplikasi edible film, Prosiding Seminar Nasional Teknik Kimia" Kejuangan". (2019) 1-6.

DOI: 10.20473/jbp.v18i2.2016.98-111

Google Scholar

[14] C.S. Joseph, K.V.H. Prashanth, N.K. Rastogi, A.R. Indiramma, S.Y. Reddy, K.S.M.S. Raghavarao, Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications, Food and Bioprocess Technology. 4 (2011) 1179–1185.

DOI: 10.1007/s11947-009-0203-1

Google Scholar

[15] K.C. Yustisi, K. Wulandari, I. Utami, Pembuatan plastik biodegradable berbahan pati dari limbah kulit pisang raja dengan penambahan kitosan dan plasticizer sorbitol, Inovasi Teknik Kimia. 9 (2024) 31-36.

DOI: 10.31942/inteka.v3i2.2488

Google Scholar

[16] S. Solekah, N. Sasria, H.A. Dewanto, Pengaruh penambahan gliserol dan kitosan kulit udang terhadap biodegradasi dan ketahanan air plastik biodegradable, al-Kimiya: Jurnal Ilmu Kimia dan Terapan. 8 (2021) 80-86.

DOI: 10.15575/ak.v8i2.13917

Google Scholar

[17] N. Sasria, R. Hernando, M.P.D. Lubis, A. Zulfikar, Production of biodegradable plastics using aking rice starch and chitosan from crab shells as a substitute for conventional plastic, IOP Conf. Series: Materials Science and Engineering. 1053 (2021) 1-9.

DOI: 10.1088/1757-899x/1053/1/012079

Google Scholar

[18] A.D. Oktavia, N. Idiawati, D. Lia, Studi awal pemisahan amilosa dan amilopektin pati ubi jalar (Ipomoea batatas Lam), Jurnal Kimia. 2 (2013) 153–156.

Google Scholar

[19] S. Diana, R. Fikri, Karakterisasi bioplastik dari pati kulit singkong dengan penambahan kitosan, Jurnal Teknologi. 14 (2014) 53-57.

Google Scholar

[20] W. Saputra, A. Hartiati, B.A. Harsojuwono, Pengaruh konsentrasi seng oksida (ZnO) dan penambahan gliserol terhadap karakteristik bioplastik dari pati umbi gadung (Dioscorea hispida Deenst), Jurnal Rekayasa dan Manajemen Agroindustri. 7 (2019) 531.

DOI: 10.24843/jrma.2019.v07.i04.p05

Google Scholar

[21] T. Muharam, D. Fitriani, D.F.M. Jannah, M.Z.A. Ghifari, R.P. Sihombing, Karakteristik daya serap air dan biodegradabilitas pada bioplastik berbasis pati singkong dengan penambahan polyvinyl alcohol, Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST). (2022) 35-49.

DOI: 10.34151/prosidingsnast.v8i1.4152

Google Scholar

[22] Japanese Industrial Standard (JIS) 2-1707, Japanese standards association, Japan, 1975.

Google Scholar

[23] S. Hidayat, R.F. Septiyanto, A.H.D. Abdullah, Y.R.D. Muchtar, I. Affifah, Perbandingan sifat mekanik bioplastik terhadap penambahan zinc oxide (ZnO), Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika. 5 (2019) 8-12.

DOI: 10.30870/gravity.v5i2.5939

Google Scholar

[24] F. Takribiah, Harunsyah, Z. Amalia, R. Fauzan, M. Sami, Pembuatan bioplastik dengan penguat ZnO dan penambahan minyak atsiri sebagai anti mikroba, Jurnal Teknologi. 22 (2022) 37-43.

DOI: 10.30811/teknologi.v22i1.2881

Google Scholar

[25] M.R. Utami, N. Widiarti, Sintesis plastik biodegradable dari kulit pisang dengan penambahan kitosan dan plasticizer gliserol, Indonesian Journal of Chemical Science. 3 (2014) 163-167.

DOI: 10.35472/jsat.v4i1.205

Google Scholar

[26] T. Surdia, S. Saito, Pengetahuan bahan teknik, PT. Pradnya Paramita – Jakarta, 1999, p.173.

Google Scholar

[27] N. Sasria, Asrilsyah, M.P.D. Lubis, A. Zulfikar, R.A. Tanjung, Sintesis dan karakterisasi plastik biodegradable berbasis pati nasi aking dan kitosan cangkang udang, Teknika: Jurnal Sains dan Teknologi. 16 (2020) 231-236.

DOI: 10.36055/tjst.v16i2.8700

Google Scholar