Basic Characteristics of the Deformation Diagrams of Compressed Concrete under the Action of Dynamic Loads

Article Preview

Abstract:

This article is devoted to the modeling of the stress-strain diagram of compressed concrete under the action of dynamic loads of various intensities. The main attention is paid to the influence of the strain rate of concrete on the determining parameters of this diagram. The degree of dependence of the dynamic increase factor (DIF) and the level of critical deformability of compressed concrete both on the rate of its deformation and on the level of elastic-plasticity (class) has been established. The analytical relationship between the main static and dynamic characteristics of the deformation diagrams of compressed concrete is established using the hypothesis of invariance and independence from the load mode of the specific potential energy of the ultimate deformation (destruction) of the material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1140)

Pages:

47-55

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Rüsch, Stahlbeton – Spannbeton, Band 1: Werkstoffeigenschaften und Bemessungsverfahren, Werner-Verlag, Düsseldorf, 1972.

Google Scholar

[2] P. Bischoff and S. Perry, Compressive Behaviour of Concrete at High Strain Rates, Materials and Structures, 24(6) (1991) 425‒450.

DOI: 10.1007/bf02472016

Google Scholar

[3] N. Han, Time Dependent Behaviour of High Strength Concrete, PhD Dissertation, Delft University of Technology, 1996.

Google Scholar

[4] A. Ansell, A Literature review on the shear capacity of dynamically loaded concrete structures, Report 89, KTH Royal Institute of Technology, Concrete Structures, Stockholm, 2005.

Google Scholar

[5] B. Riisgaard, T. Ngo, P. Mendis, C. Georgakis, & H. Stang, Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar, Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 3 (2007) 1467‒1471.

DOI: 10.21012/fc10.235604

Google Scholar

[6] X. Zhang, G. Ruiz, R.C. Yu, E. Poveda, R. Porras, Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC 2010, Construction and Building Materials, 30 (2012) 301‒308.

DOI: 10.1016/j.conbuildmat.2011.11.037

Google Scholar

[7] DSTU B V.2.6-156: 2010, Konstruktsii budynkiv i sporud. Betonni ta zalizobetonni konstruktsii z vazhkoho betonu [Structures of buildings and structures. Concrete and reinforced concrete structures made of heavy concrete], Minrehionbud Ukrainy, Kyiv, 2011.

Google Scholar

[8] A.S. Grigoriev, E.V. Shilko, V.A. Skripnyak, A.G. Chernyavsky, S.G. Psakhie, The numerical model of dynamic mechanical behavior of brittle materials based on the concept of the kinetic theory of strength, PNRPU Mechanics Bulletin, 3 (2017) 75‒99.

DOI: 10.15593/perm.mech/eng.2018.3.03

Google Scholar

[9] CEB-FIP Model Code 1990, Design Code, Comité Euro-International du Béton, Lausanne, 1991.

DOI: 10.1680/ceb-fipmc1990.35430

Google Scholar

[10] K. Fujikake, J. Mizuno, A. Suzuki, T. Ohno, T. Nonak, Dynamic strain softening of concrete in compression under rapid loading, WIT Transactions on the Built Environment: Structures under Shock & Impact, 32 (1998) 481‒491.

Google Scholar

[11] Fib Model Code 2010, Final draft, Fib Bulletin, 66(2) (2012) 377.

Google Scholar

[12] W.H. Dilger, R. Koch and R. Kowalczyk, Ductility of plain and confined concrete under different strain rates, ACI Journal, 81(1) (1984) 73‒81.

DOI: 10.14359/10649

Google Scholar

[13] L.E. Malvern, D.A. Jenkins, T. Tang, C.A. Ross, Dynamic compressive testing of concrete, Proceedings of the Second Symposium on The Interaction of Non-Nuclear Munitions with Structures, (1985) 194‒199.

Google Scholar

[14] J.W. Tedesco, C.A. Ross, Strain-rate-dependent constitutive equations for concrete, ASME J. Press. Vessel Technol, 120 (1998) 398‒405.

DOI: 10.1115/1.2842350

Google Scholar

[15] D.L. Grote, S.W. Park, M. Zhou, Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization, International Journal of Impact Engineering, 25 (2001) 869‒886.

DOI: 10.1016/s0734-743x(01)00020-3

Google Scholar

[16] K.S. Long, M. Kasmuri, A.S.Z. Hasan, R. Hamid, Dynamic Increase Factor of High Strength Concrete with Silica Fume at High Strain Rate Loading, Materials Science Forum, 857 (2016) 299‒304.

DOI: 10.4028/www.scientific.net/msf.857.299

Google Scholar

[17] S. Lee, K.-M. Kim, J.-Y. Cho, Investigation into Pure Rate Effect on Dynamic Increase Factor for Concrete Compressive Strength, Procedia Engineering, 210 (2017) 11‒17.

DOI: 10.1016/j.proeng.2017.11.042

Google Scholar

[18] B. Sun, R. Chen, Y. Ping, Z. Zhu, N. Wu, Z. Shi, Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test, Materials, 15 (2022) 2995.

DOI: 10.3390/ma15092995

Google Scholar

[19] O.V. Romashko-Maistruk, V.M. Romashko, Osnovni osoblyvosti deformuvannia betonu za dii dynamichnykh navantazhen [The main features of concrete deformation under the action of dynamic loads], Zb. nauk. prats UkrDUZT, 205 (2023) 60‒70.

DOI: 10.18664/1994-7852.205.2023.288924

Google Scholar

[20] W.L. Cowell, Dynamic properties of plain Portland cement concrete, Technical Report No. R447. US Naval Civil Engineering Laboratory, Port Hueneme, California, 1966.

Google Scholar

[21] S. Kono, F. Watanabe, A. Kajitani, Stress-strain relation of confined concrete under dynamic loading, In Fracture Mechanics of Concrete Structures, de Borst et al. (Ed.). Swets & Zeitlinger, Lisse, Netherlands, (2001) 585‒592.

Google Scholar

[22] H. Othman, H. Marzouk, Strain Rate Sensitivity of Fiber-Reinforced Cementitious Composites, ACI Materials Journal, 113(2) (2016) 143‒150.

DOI: 10.14359/51688461

Google Scholar

[23] M. Salman, A. Al-Amawee, The Ratio between Static and Dynamic Modulus of Elasticity in Normal and High Strength Concrete, Journal of Engineering and Development, 10(2) (2006) 163‒174.

Google Scholar

[24] J. Popovics, A Study of Static and Dynamic Modulus of Elasticity of Concrete. Final Report, American Concrete Institute - Concrete Research Council, Urbana, IL., 2008.

Google Scholar

[25] F.D. Lydon, R.V. Balendran, Some Observations on Elastic Properties of Plain Concrete, Cement and Concrete Research, 16(3) (1986) 314‒324.

DOI: 10.1016/0008-8846(86)90106-7

Google Scholar

[26] X. Lu, Q. Sun, W. Feng, J. Tian, Evaluation of dynamic modulus of elasticity of concrete using impact-echo method, Construction and Building Materials, 47 (2013) 231‒239.

DOI: 10.1016/j.conbuildmat.2013.04.043

Google Scholar

[27] S. Peng, Z. Yu, Q. Zhao, X. Du, X. Xie, B. Chen, Y. Zhang, Research on Dynamic Compressive Performance and Failure Mechanism Analysis of Concrete after High Temperature and Rapid Cooling, Materials, 15 (2022) 4642.

DOI: 10.3390/ma15134642

Google Scholar

[28] O. Hjorth, Ein Beitrag zur Frage der Festigkeiten und des Verbundverhaltens von Stahl und Beton bei hohen Dehnungsgeschwindigkeiten, Dissertation TU Braunschweig, 1976.

Google Scholar

[29] B.P. Hughes, A.J. Watson, Compressive strength and ultimate strain of concrete under impact loading, Mag. Concr. Res, 30(105) (1978) 189‒199.

DOI: 10.1680/macr.1978.30.105.189

Google Scholar

[30] D. Watstein, Effect of straining rate on the compressive strength and elastic properties of concrete, ACI Journal, 49 (1953) 729‒744.

DOI: 10.14359/11850

Google Scholar

[31] B. Bresler, V.V. Bertero, Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression, Proceedings of 2nd Canadian Conference on Earthquake Engineering, Hamilton, Ontario, (1975) 1‒13.

Google Scholar

[32] F.S. Rostasy, J. Scheuermann and K.H. Sprenger, Mechanical behaviour of some construction materials subjected to rapid loading and low temperature, Betonwerk+Fertigteil-Technik, 50(6) (1984) 393‒401.

Google Scholar

[33] V.M. Romashko, General model and the mechanics of concrete elements and structures deformation, IOP Conf. Ser.: Materials Science and Engineering, 1021 (2021) 012026.

DOI: 10.1088/1757-899x/1021/1/012026

Google Scholar

[34] V.M. Romashko, Deformatsiino-sylova model oporu betonu ta zalizobetonu [Deformation-force model of resistance of concrete and reinforced concrete], O.Zen, Rivne, 2016.

Google Scholar

[35] V. Romashko, O. Romashko, Fundamentals of the General Theory of Resistance of Reinforced Concrete Elements and Structures to Power Influences, Materials Science Forum, 968 (2019) 534‒540.

DOI: 10.4028/www.scientific.net/msf.968.534

Google Scholar

[36] V.M. Romashko and O.V. Romashko, Energy resource of reinforced concrete elements and structures for the deformation-force model of their deformation, IOP Conf. Ser.: Mater. Sci. Eng, 708 (2019) 012068.

DOI: 10.1088/1757-899x/708/1/012068

Google Scholar

[37] V.M. Romashko, O.V. Romashko-Maistruk, Model ta metodyka rozrakhunku resursu zalizobetonnykh elementiv i konstruktsii [Model and method for calculating the resource of reinforced concrete elements and structures], Visnyk ODABA, 84 (2021) 59‒68.

DOI: 10.31650/2415-377x-2021-84-59-68

Google Scholar

[38] V. Romashko, O. Romashko-Maistruk, Strength resource calculation of the reinforced concrete elements according to the energy criterion, Procedia Structural Integrity, 36 (2022) 269‒276.

DOI: 10.1016/j.prostr.2022.01.034

Google Scholar