[1]
W. M. Lewandowski, M. Ryms, W. Kosakowski, Thermal biomass conversion: A review, Processes. 8 (2020) 516.
DOI: 10.3390/pr8050516
Google Scholar
[2]
L. Zhao, K. M. Nikbin, Characterizing high temperature crack growth behaviour under mixed environmental, creep and fatigue conditions, Materials Science and Engineering A. 728 (2018) 102-114.
DOI: 10.1016/j.msea.2018.04.109
Google Scholar
[3]
K.-B. Yoo, Y. He, H.-S. Lee, S.-Y. Bae, D.-S. Kim, Study on the microstructural degradation of the boiler tubes for coal-fired power plants, KEPCO Journal on Electric Power and Energy. 4 (2018) 25-31.
Google Scholar
[4]
S. Yamazaki, Z. Lu, Y. Ito, Y. Takeda, T. Shoji, The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water, Corrosion Science. 50 (2008) 835-846.
DOI: 10.1016/j.corsci.2007.07.012
Google Scholar
[5]
H. C. Furtado, I. Le May, High temperature degradation in power plants and refineries, Materials Research. 7 (2004) 103-110.
DOI: 10.1590/s1516-14392004000100015
Google Scholar
[6]
B. W. Baker, L. N. Brewer, Joining of oxide dispersion strengthened steels for advanced reactors, JOM. 66 (2014) 2442-2457.
DOI: 10.1007/s11837-014-1206-6
Google Scholar
[7]
C. Capdevila, M. Serrano, M. Campos, High strength oxide dispersion strengthened steels: fundamentals and applications, Materials Science and Technology. 30 (2014) 1655-1657.
DOI: 10.1179/0267083614z.000000000787
Google Scholar
[8]
C. Sun, R. Hui, W. Qu, S. Yick, Progress in corrosion resistant materials for supercritical water reactors, Corrosion Science. 51 (2009) 2508-2523.
DOI: 10.1016/j.corsci.2009.07.007
Google Scholar
[9]
G. Dharmalingam, P. Sellamuthu, S. Salunkhe, Corrosion and high temperature compressive strength behaviour of 17Cr ferritic ODS steel with addition of aluminium through vacuum hot pressing, Adv. Mater. Process. Technol. (2021) 1-22.
DOI: 10.1080/2374068x.2021.1945301
Google Scholar
[10]
G. Sundararajan, R. Vijay, A. V. Reddy, Development of 9Cr ferritic-martensitic and 18Cr ferritic oxide dispersion strengthened steels, Current Science. (2013) 1100-1106.
Google Scholar
[11]
X.-H. Chen, H. Yan, Effect of nanoparticle Al2O3 addition on microstructure and mechanical properties of 7075 alloy, International Journal of Cast Metals Research. 28 (2015) 337-344.
DOI: 10.1179/1743133615y.0000000034
Google Scholar
[12]
L. Singh, B. Ram, A. Singh, Optimization of process parameter for stir casted aluminium metal matrix composite using taguchi method, International Journal of Research in Engineering and Technology. 2 (2013) 375-383.
DOI: 10.15623/ijret.2013.0208059
Google Scholar
[13]
A. Zulfia, D. Ramdaniawati, D. Dhaneswara, The role of Al2O3 nanoparticles addition on characteristic of Al6061 composite produced by stir casting process, International Journal of Materials Science and Engineering. 6 (2018) 39-47.
DOI: 10.17706/ijmse.2018.6.2.39-47
Google Scholar
[14]
C. Wang, L. Zhang, K. Pan, S. Wei, X. Wu, Q. Li, Effect of Al2O3 content and swaging on microstructure and mechanical properties of Al2O3/W alloys, International Journal of Refractory Metals and Hard Materials. 86 (2020) 105082.
DOI: 10.1016/j.ijrmhm.2019.105082
Google Scholar
[15]
Y. Bai, Y. Guo, J. Li, Z. Yang, J. Tian, Effect of Al2O3 nanoparticle reinforcement on the mechanical and high-temperature tribological behavior of Al-7075 alloy, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 231 (2017) 900-909.
DOI: 10.1177/1350650116683627
Google Scholar
[16]
H. S. Cho, A. Kimura, Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water, Journal of Nuclear Materials. 367 (2007) 1180-1184.
DOI: 10.1016/j.jnucmat.2007.03.211
Google Scholar
[17]
R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, D. T. Hoelzer, Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys, Journal of Nuclear Materials. 341 (2005) 103-114.
DOI: 10.1016/j.jnucmat.2005.01.017
Google Scholar
[18]
S. Noh, S. H. Kang, T. K. Kim, Microstructures and Mechanical Properties of ODS Ferritic Stainless Steels for High Temperature Service Applications, Archives of Metallurgy and Materials. 64 (2019) 921-924.
DOI: 10.24425/amm.2019.129473
Google Scholar
[19]
S. Pokwitidkul, S. Chaleawlert-umpon, P. Treewiriyakitja, K. Kamonsuangkasem, S. Wannapaiboon, J. Tungtrongpairoj, Fabrication of HVOF sprayed 80Ni20Cr/nano-Y2O3 and nano-ZrO2 nanocomposite coatings to enhance high-temperature degradation resistance in CO-CO2 atmospheres, Surface and Coatings Technology. (2024) 130519.
DOI: 10.1016/j.surfcoat.2024.130519
Google Scholar
[20]
M. Łazińska, T. Durejko, W. Polkowski, The effect of nanometric α-Al2O3 addition on structure and mechanical properties of FeAl alloys fabricated by LENS technique, Archives of Metallurgy and Materials. 62 (2017).
DOI: 10.1515/amm-2017-0260
Google Scholar
[21]
E. Biguereau, D. Bouvard, J. M. Chaix, S. Roure, On the swelling of silver powder during sintering, Powder Metallurgy. 59 (2016) 394-400.
DOI: 10.1080/00325899.2016.1250037
Google Scholar
[22]
A. Mazahery, M. Ostadshabani, Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites, Journal of Composite Materials. 45 (2011) 2579-2586.
DOI: 10.1177/0021998311401111
Google Scholar
[23]
Y. Wang, J. Gou, R. Chu, D. Zhen, S. Liu, The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys, Tribology International. 103 (2016) 102-112.
DOI: 10.1016/j.triboint.2016.06.041
Google Scholar
[24]
I. Mobasherpour, A. A. Tofigh, M. Ebrahimi, Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying, Materials Chemistry and Physics. 138 (2013) 535-541.
DOI: 10.1016/j.matchemphys.2012.12.015
Google Scholar