[1]
V. Sadkovyi, V. Andronov, O. Semkiv, A. Kovalov, E. Rybka, Y. Otrosh, M. Udianskyi, V. Koloskov, A. Danilin, P. Kovalov. Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures. (2021) 1–166.
DOI: 10.15587/978-617-7319-43-5
Google Scholar
[2]
Loboichenko, V., Nikitina, N., Leonova, N., Konovalova, O., Bondarenko, A., Zemlianskyi, O., Rashkevich, N. Study of the features of determination of heavy metals in bottom sediments. In IOP Conference Series: Earth and Environmental Science, 1348 (1) (2024) p.012014.
DOI: 10.1088/1755-1315/1348/1/012014
Google Scholar
[3]
Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode, In Materials Science Forum, 1038 (2021) pp.514-523.
DOI: 10.4028/www.scientific.net/msf.1038.514
Google Scholar
[4]
Kovalov, A., Otrosh, Y., Kovalevska, T., & Safronov, S. Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings, In Materials Science and Engineering. IOP Publishing, 708 (1) (2019) p.012058.
DOI: 10.1088/1757-899x/708/1/012058
Google Scholar
[5]
Kovalov A., Otrosh Y., Rybka E., Kovalevska T., Togobytska V. and Rolin I. Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. 1006 (2020) 179-184.
DOI: 10.4028/www.scientific.net/msf.1006.179
Google Scholar
[6]
Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., & Venzhego, G. Methodology for Calculating the Technical State of a Reinforced-Concrete Fragment in a Building Influenced by High Temperature. Materials Science Forum, 1006 (2020) 166–172.
DOI: 10.4028/www.scientific.net/msf.1006.166
Google Scholar
[7]
S Guzii, Y Otrosh, O Guzii, A Kovalov, K Sotiriadis. Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire, In Materials Science Forum, 1038 (2021) pp.524-530.
DOI: 10.4028/www.scientific.net/msf.1038.524
Google Scholar
[8]
I. Medved, V. Kovregin, O. Myrgorod, A. Lysenkom, Planning an Experiment for Low-Cycle Fatiue under Conditions Deep Cooling. Materials Science Forum. 1038 (2021) 9–14.
DOI: 10.4028/www.scientific.net/msf.1038.9
Google Scholar
[9]
A. Kovalov, R. Purdenko, Yu. Otrosh, V. Tomenko, N. Rashkevich, E. Shcholokov, M. Pidhornyy, N. Zolotova, O. Suprun, Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5/1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[10]
I. Medved, Y. Otrosh, A. Kovalov, Y. Mykhailovska, Search for solutions in the problems of calculation of building structures. AIP Conference Proceedings. 2840(1) (2023) 040003.
DOI: 10.1063/5.0168054
Google Scholar
[11]
Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. Mathematical modeling of fire-proof efficiency of coatings based on silicate composition. Materials Science Forum, 1006 (2020) 70-75.
DOI: 10.4028/www.scientific.net/msf.1006.70
Google Scholar
[12]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy. 46 (2021) 12361–12371.
DOI: 10.1016/j.ijhydene.2020.09.067
Google Scholar
[13]
T.P. Romanyuk, T.O. Tereshchenko, G.V. Prisenko, I.M. Gorodkova, Mathematical programming: Educationl manual. K.: IZMN. 1996.
Google Scholar
[14]
Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum. 1006 (2020) 117–122.
DOI: 10.4028/www.scientific.net/msf.1006.117
Google Scholar
[15]
I.I. Medved, Optization of design schemes. Modern building structures made of metal and wood. 25 (2021) 85–91.
Google Scholar
[16]
I. Medved, M. Surianinov, Y. Otrosh, O. Pirohov, Optimization of the calculated scheme. IOP Conf. Series: Material Science and Engineering. 1164 (2021) 012051.
DOI: 10.1088/1757-899x/1164/1/012051
Google Scholar
[17]
B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies. 5/9 (89) (2017) 43–48.
DOI: 10.15587/1729-4061.2017.110092
Google Scholar
[18]
B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies. 4/9 (88) (2017) 53–59.
DOI: 10.15587/1729-4061.2017.108448
Google Scholar
[19]
I. Medved, M. Biloshytskiy, R. Maiboroda, E. Shcholokov, V. Tryhub, Seach for solution in the problems of calculation of building stractures. Mechanics and mathematical methods. 2 (2021) 75–82.
Google Scholar
[20]
K. Кorytchehko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Probl. At. Sci. Technol. 116 (2018) 194–199.
Google Scholar
[21]
O.Z. Dveirin, O.V. Andreev, A.V. Kondrat'ev, V.Ye. Haidachuk, Stressed State in the Vicinity of a Hole in Mechanical joint of Composite Parts, International Applied Mechanics. 57, 2 (2021) 234–247.
DOI: 10.1007/s10778-021-01076-4
Google Scholar
[22]
O. Bolbas, N. Deyneko, S. Yeremenko, O. Kyryllova, O. Myrgorod, O. Soshinsky, N. Teliura, N. Tsapko, R. Shevchenko, Y. Yurchyk, Degradation of CDTE SC during operation: Modeling and experiment. Eastern-European Journal of Enterprise Technologies. 6(12-102) (2019) 46–51.
DOI: 10.15587/1729-4061.2019.185628
Google Scholar