Processing of a Beta Titanium Alloy by Metal Injection Molding (MIM)

Article Preview

Abstract:

The characteristics of β-phase metastable Ti alloys make them an attractive choice for advanced engineering applications in demanding conditions. Ti-35Nb alloy has high strength-to-weight ratios, deep hardenability and high biocompatibility exhibiting high potential for use in niche applications for aircraft structures, orthopedic implants, and orthodontic devices. The difficulty of producing complex shapes of these alloys by conventional methods for reasonable costs makes Metal Injection Moulding (MIM) attractive. Sintering behavior, microstructure and mechanical properties of a Ti–35Nb alloy processed by MIM technology from hydrided powders were investigated in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermal and microhardness analysis. Samples with relative density up to 93% have been produced using a feedstock based on wax-polymer binder. The microstructural evolution observed during sintering from 900 °C up to 1500 °C indicates a combination of densification and optimized microstructure reached because of the complete dissolution of the β stabilizer (Nb) in the titanium matrix. The injection and sintering parameters provided a homogeneous microstructure with some TiC precipitates at grain boundaries and relative high porosity. Higher sintering temperatures or longer holding times can lead to intensive grain growth.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1146)

Pages:

103-111

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Donachie, Titanium a technical guide, ASM, 1988.

Google Scholar

[2] E.W. Collings, The physical metallurgy of titanium alloys, American Society for Metals, 1983.

Google Scholar

[3] V.A.R. Henriques, Titanium production for aerospace applications, Journal of Aerospace Technology and Management, 1, (2009) 7–17.

Google Scholar

[4] A. Dehghan-Manshadi, MJ. Bermingham, M.S. Dargusch, D.H. StJohn, M. Qian, Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technology, 319 (2017) 289–301.

DOI: 10.1016/j.powtec.2017.06.053

Google Scholar

[5] M.C.C. Ueta, C.A. Fracote, V.A.R Henriques, M.L.A. Graça, C.A.A Cairo, Densification study of titanium powder compacts,Materials Science Forum, 498-499 (2005) 211–216

DOI: 10.4028/www.scientific.net/msf.498-499.211

Google Scholar

[6] R.M. German, Progress in Titanium Metal Powder Injection Molding, Materials, 6 (2013) 3641-3662.

DOI: 10.3390/ma6083641

Google Scholar

[7] F.H. Froes, Advances in titanium metal injection molding, Powder Metall. Met. Ceram., 46 (2007) 303–310.

DOI: 10.1007/s11106-007-0048-y

Google Scholar

[8] Lin Dongguo et ali, Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection molding feedstock, Powder Technology, 311 (2017) 357–363.

DOI: 10.1016/j.powtec.2016.12.071

Google Scholar

[9] G. Thavanayagam, K.L. Pickering, J.E. Swan, P. Cao, Analysis of rheological behavior of titanium feedstocks formulated with a water-soluble binder system for powder injection molding, Powder Technology, 269 (2015) 227–232.

DOI: 10.1016/j.powtec.2014.09.020

Google Scholar

[10] A. Mannschatz, S. Hohn, T. Moritz, Powder-binder separation in injection moulded green parts, J. Eur. Ceram. Soc. 30 (2010) 2827–2832.

DOI: 10.1016/j.jeurceramsoc.2010.02.020

Google Scholar

[11] J.-E. Bidaux, C. Closuit, M. Rodriguez-Arbaizar, E. Carreno-Morelli, Metal injection moulding of Ti–Nb alloys for implant application, Eur. Cells Mater. 22 (2011) 32.

DOI: 10.1179/0032589913z.000000000118

Google Scholar

[12] D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak, Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material, J. Mech. Behav. Biomed. Mater. 28 (2013) 171–182.

DOI: 10.1016/j.jmbbm.2013.08.013

Google Scholar

[13] F Kafkas, T. Ebel, Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding, Journal of Alloys and Compounds, 617 (2014) 359–366.

DOI: 10.1016/j.jallcom.2014.07.168

Google Scholar

[14] D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak, Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial, Journal of Alloys and Compounds 640 (2015) 393–400.

DOI: 10.1016/j.jallcom.2015.04.039

Google Scholar

[15] R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Power Industries Federation, New York, USA, 1997.

Google Scholar

[16] Yanjun Liu, Yu Pan, Jianzhuo Sun, Xinxin Wu, Jinshan Zhang, Fan Kuang, Xin Lu, Metal injection molding of high-performance Ti composite using hydride-dehydride (HDH) powder, Journal of Manuf Proc, 89 (2023) 328-337.

DOI: 10.1016/j.jmapro.2023.01.064

Google Scholar

[17] S.J. Park, Y. Wu, D.F. Heaney, X. Zou, G. Gai, R.M. German, Rheological and thermal debinding behaviors in titanium powder injection molding, Metall. Mater. Trans. A, 40 (2009) 215–222.

DOI: 10.1007/s11661-008-9690-3

Google Scholar

[18] R.K. Enneti, S.J. Park, R.M. German, S.V. Atre, Review: thermal debinding process in particulate materials processing, Mater. Manuf. Process. 27 (2012) 103–118.

DOI: 10.1080/10426914.2011.560233

Google Scholar

[19] E.B. Taddei, V.A.R. Henriques, C.R.M. Silva, C.A.A. Cairo, Characterization of Ti-35Nb-7Zr-5Ta alloy produced by powder metallurgy, Materials Science Forum, 498-499 (2005), 34–39

DOI: 10.4028/www.scientific.net/msf.498-499.34

Google Scholar

[20] V.A.R Henriques, C.R.M. Silva, Production of titanium alloys for medical implants by powder metallurgy, Key Engineering Materials, 189-191 (2001) 443–448.

DOI: 10.4028/www.scientific.net/kem.189-191.443

Google Scholar

[21] V.A.R Henriques, H.R.Z Sandim, G.C. Coelho, C.R.M. Silva, Microstructural Evolution During Hot Pressing of the Blended Elemental Ti-6%Al-7%Nb Alloy. Materials Science & Engineering A, 347 (2003) 315-324.

DOI: 10.1016/s0921-5093(02)00604-4

Google Scholar

[22] V.A.R. Henriques, E.T. Galvani, S.L.G. Petroni, M. S. M Paula, T. G.Lemos, Production of Ti 13Nb 13Zr alloy for surgical implants by powder metallurgy, Journal of Materials Science, 45 (2010) 5844-5850.

DOI: 10.1007/s10853-010-4660-8

Google Scholar

[23] D.R. Santos, M.S. Pereira, M.S., C.A.A. Cairo, M.L.A. Graça, M.L.A., V.A.R Henriques, Isochronal sintering of the blended elemental Ti–35Nb alloy, Materials Science and Engineering: A, 472 (2008) 193–197.

DOI: 10.1016/j.msea.2007.03.075

Google Scholar

[24] E.B. Taddei, V.A.R. Henriques, V.A.R.; C.R.M. Silva; C.A.A. Cairo Production of New Titanium Alloy for Orthopedic Implants, Materials science & engineering C, 24 (2004) 683-687.

DOI: 10.1016/j.msec.2004.08.011

Google Scholar

[25] E.B. Taddei, V.A.R. Henriques, V.A.R.; C.R.M. Silva; C.A.A. Cairo Characterization of Ti-35Nb-7Zr-5Ta Alloy Produced by Powder Metallurgy, Materials Science Forum, 498-499 (2005) 34-39.

DOI: 10.4028/www.scientific.net/msf.498-499.34

Google Scholar