Optimizing Titanium-Boron Carbide Composites for Aerospace Manufacturing via Plasma Metal Deposition

Article Preview

Abstract:

Additive Manufacturing technologies revolutionize the production of 3D components by selectively depositing material layers, facilitating intricate geometries and cavities with minimal material waste. Among these techniques, Plasma Metal Deposition (PMD) stands out as a powder-based method offering promising applications, particularly in the aerospace sector.In this study, five specimens manufactured via PMD have been investigated, employing a base material of Grade 2 titanium and a welding material comprising a powder blend of grade 1 titanium and 30% B4C particles. The incorporation of boron carbide aims to further augment the already commendable properties of titanium, catering to the stringent requirements of the aerospace industry.Attention is directed towards key manufacturing parameters such as the transferred arc and torch travel speed, while maintaining fixed parameters including pilot arc, current, and torch-substrate height. The primary objective of this research is to comprehensively explore the PMD technique, scrutinizing potential thermodynamic reactions during the welding process between titanium and boron carbide. Concurrently, thorough characterization of the specimens will be conducted to elucidate their properties.This project seeks to optimize the PMD manufacturing process and enhance the performance characteristics of the produced parts, thereby addressing critical needs in the aerospace sector. By unravelling the intricacies of thermodynamic interactions and material properties, we aim to pave the way for advancements in additive manufacturing methodologies and the production of high-performance titanium components for aerospace applications

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1146)

Pages:

49-56

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Molitch-Hou, Overview of additive manufacturing process, in: J. Zhang, Y.G. Jung (Eds.), Additive Manufacturing: Materials, processes, quantifications and applications, Elsevier, Amsterdam, 2018, p.1–38

DOI: 10.1016/B978-0-12-812155-9.00001-3

Google Scholar

[2] Y. Wu, J. Fang, C. Wu, C. Li, G. Sun, Q. Li, Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption, Int. J. Mech. Sci. 246 (2023) 108102

DOI: 10.1016/J.IJMECSCI.2023.108102

Google Scholar

[3] K. Sathish, S. Senthil Kumar, R. Thamil Magal, V. Selvaraj, V. Narasimharaj, R. Karthikeyan, G. Sabarinathan, A. Esubalew Kassa, A comparative study on subtractive manufacturing and additive manufacturing, Adv. Mater. Sci. Eng. 2022 (2022) 6892641

DOI: 10.1155/2022/6892641

Google Scholar

[4] E.M. Perez-Soriano, E. Ariza, C. Arevalo, I. Montealegre-Melendez, M. Kitzmantel, E. Neubauer, Processing by Additive Manufacturing based on Plasma Transferred Arc of Hastelloy in air and argon atmosphere, Metals 10(2) (2020) 200

DOI: 10.3390/met10020200

Google Scholar

[5] M. Dhaneshwaran, V. Srinivasa Chari, S. Jhavar, Plasma metal deposition of stainless steel 316L over mild steel surface, Mater. Today Proc. 46 (2021) 1116–1121

DOI: 10.1016/J.MATPR.2021.01.529

Google Scholar

[6] Y. Zeng, J. Wang, X. Liu, Y. Xue, L. Tang, Y. Tong, F. Jiang, Laser additive manufacturing of ceramic reinforced titanium matrix composites: A review of microstructure, properties, auxiliary processes, and simulations, Compos. Part A Appl. Sci. Manuf. 177 (2024) 107941

DOI: 10.1016/j.compositesa.2023.107941

Google Scholar

[7] Z. Wang, X. Bai, M. Que, X. Zhou, Wire arc additive manufacturing of network microstructure (TiB+TiC)/Ti6Al4V composites using flux-cored wires, Ceram. Int. 49(3) (2023) 4168–4176

DOI: 10.1016/j.ceramint.2022.09.299

Google Scholar

[8] H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review, Int. J. Mach. Tools Manuf. 133 (2018) 85–102

DOI: 10.1016/j.ijmachtools.2018.06.003

Google Scholar

[9] M.N. Ahsan, A.J. Pinkerton, R.J. Moat, J. Shackleton, A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders, Mater. Sci. Eng. A 528(25–26) (2011) 7648–7657

DOI: 10.1016/J.MSEA.2011.06.074

Google Scholar

[10] B. Dutta, F.H. Froes, Raw materials for Additive Manufacturing of titanium, in: Additive Manufacturing of titanium alloys, Butterworth-Heinemann, Oxford, 2016, p.11–23

DOI: 10.1016/B978-0-12-804782-8.00002-1

Google Scholar

[11] N.A. Rosli, M.R. Alkahari, M.F. bin Abdollah, S. Maidin, F.R. Ramli, S.G. Herawan, Review on effect of heat input for wire arc additive manufacturing process, J. Mater. Res. Technol. 11 (2021) 2127-2145

DOI: 10.1016/j.jmrt.2021.02.002

Google Scholar

[12] T. Singh Singhal, J. Kumar Jain, M. Kumar, V. Bhojak, K. Kumar Saxena, D. Buddhi, C. Prakash, A comprehensive comparative review: welding and additive manufacturing, Int. J. Interact. Des. Manuf. 18 (2024) 1829-1843

DOI: 10.1007/s12008-022-01152-0

Google Scholar

[13] SAE International Material Specification, AMS7004 Titanium alloy preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on substrate Ti-6Al-4V stress relieved, 2019

DOI: 10.4271/AMS7004

Google Scholar

[14] S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Mater. Des. 95 (2016) 127–132

DOI: 10.1016/J.MATDES.2016.01.092

Google Scholar

[15] C. Arévalo, I. Montealegre-Meléndez, E. Ariza-Galván, M. Kitzmantel, C. Rubio-Escudero, E. Neubauer, Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing, Materials 9 (2016) 919

DOI: 10.3390/ma9110919

Google Scholar

[16] E. Ariza, I. Montealegre-Meléndez, C. Arévalo, M. Kitzmantel, E. Neubauer, Ti/B4C composites prepared by in situ reaction using Inductive Hot Pressing, Key Eng. Mater. 742 (2017) 121–128

DOI: 10.4028/www.scientific.net/KEM.742.121

Google Scholar

[17] E. Ariza, I. Montealegre Meléndez, C. Arévalo, E.M. Pérez Soriano, E. Neubauer, M. Kitzmantel, Plasma Metal Deposition for Metallic Materials, in: I.V. Shishkovsky (Ed.), Advanced Additive Manufacturing, IntechOpen, London, 2022

DOI: 10.5772/intechopen.101448

Google Scholar

[18] I. Montealegre-Meléndez, C. Arévalo, A.M. Beltrán, M. Kitzmantel, E. Neubauer, E.M. Pérez Soriano, Reaction layer analysis of in situ reinforced titanium composites: Influence of the starting material composition on the mechanical properties, Metals 10 (2020) 265

DOI: 10.3390/met10020265

Google Scholar

[19] L. Jia, X. Wang, B. Chen, H. Imai, S. Li, Z. Lu, K. Kondoh, Microstructural evolution and competitive reaction behavior of Ti-B4C system under solid-state sintering, J. Alloys Compd. 687 (2016) 1004–1011

DOI: 10.1016/j.jallcom.2016.06.280

Google Scholar

[20] I. Montealegre-Meléndez, C. Arévalo, E.M. Pérez-Soriano, M. Kitzmantel, E. Neubauer, Microstructural and XRD analysis and study of the properties of the system Ti-TiAl-B4C processed under different operational conditions, Metals 8(5) (2018) 367

DOI: 10.3390/met8050367

Google Scholar

[21] L. Jia, S. Li, H. Imai, B. Chen, K. Kondoh, Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature, Mater. Sci. Eng. A 614 (2014) 129–135

DOI: 10.1016/j.msea.2014.07.020

Google Scholar

[22] K. Kondoh, Titanium metal matrix composites by powder metallurgy (PM) routes, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, Oxford, 2015, p.277–297

DOI: 10.1016/B978-0-12-800054-0.00016-2

Google Scholar

[23] S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB, Mater. Sci. Eng. A 628 (2015) 75–83

DOI: 10.1016/j.msea.2015.01.033

Google Scholar