[1]
M. Molitch-Hou, Overview of additive manufacturing process, in: J. Zhang, Y.G. Jung (Eds.), Additive Manufacturing: Materials, processes, quantifications and applications, Elsevier, Amsterdam, 2018, p.1–38
DOI: 10.1016/B978-0-12-812155-9.00001-3
Google Scholar
[2]
Y. Wu, J. Fang, C. Wu, C. Li, G. Sun, Q. Li, Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption, Int. J. Mech. Sci. 246 (2023) 108102
DOI: 10.1016/J.IJMECSCI.2023.108102
Google Scholar
[3]
K. Sathish, S. Senthil Kumar, R. Thamil Magal, V. Selvaraj, V. Narasimharaj, R. Karthikeyan, G. Sabarinathan, A. Esubalew Kassa, A comparative study on subtractive manufacturing and additive manufacturing, Adv. Mater. Sci. Eng. 2022 (2022) 6892641
DOI: 10.1155/2022/6892641
Google Scholar
[4]
E.M. Perez-Soriano, E. Ariza, C. Arevalo, I. Montealegre-Melendez, M. Kitzmantel, E. Neubauer, Processing by Additive Manufacturing based on Plasma Transferred Arc of Hastelloy in air and argon atmosphere, Metals 10(2) (2020) 200
DOI: 10.3390/met10020200
Google Scholar
[5]
M. Dhaneshwaran, V. Srinivasa Chari, S. Jhavar, Plasma metal deposition of stainless steel 316L over mild steel surface, Mater. Today Proc. 46 (2021) 1116–1121
DOI: 10.1016/J.MATPR.2021.01.529
Google Scholar
[6]
Y. Zeng, J. Wang, X. Liu, Y. Xue, L. Tang, Y. Tong, F. Jiang, Laser additive manufacturing of ceramic reinforced titanium matrix composites: A review of microstructure, properties, auxiliary processes, and simulations, Compos. Part A Appl. Sci. Manuf. 177 (2024) 107941
DOI: 10.1016/j.compositesa.2023.107941
Google Scholar
[7]
Z. Wang, X. Bai, M. Que, X. Zhou, Wire arc additive manufacturing of network microstructure (TiB+TiC)/Ti6Al4V composites using flux-cored wires, Ceram. Int. 49(3) (2023) 4168–4176
DOI: 10.1016/j.ceramint.2022.09.299
Google Scholar
[8]
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review, Int. J. Mach. Tools Manuf. 133 (2018) 85–102
DOI: 10.1016/j.ijmachtools.2018.06.003
Google Scholar
[9]
M.N. Ahsan, A.J. Pinkerton, R.J. Moat, J. Shackleton, A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti–6Al–4V powders, Mater. Sci. Eng. A 528(25–26) (2011) 7648–7657
DOI: 10.1016/J.MSEA.2011.06.074
Google Scholar
[10]
B. Dutta, F.H. Froes, Raw materials for Additive Manufacturing of titanium, in: Additive Manufacturing of titanium alloys, Butterworth-Heinemann, Oxford, 2016, p.11–23
DOI: 10.1016/B978-0-12-804782-8.00002-1
Google Scholar
[11]
N.A. Rosli, M.R. Alkahari, M.F. bin Abdollah, S. Maidin, F.R. Ramli, S.G. Herawan, Review on effect of heat input for wire arc additive manufacturing process, J. Mater. Res. Technol. 11 (2021) 2127-2145
DOI: 10.1016/j.jmrt.2021.02.002
Google Scholar
[12]
T. Singh Singhal, J. Kumar Jain, M. Kumar, V. Bhojak, K. Kumar Saxena, D. Buddhi, C. Prakash, A comprehensive comparative review: welding and additive manufacturing, Int. J. Interact. Des. Manuf. 18 (2024) 1829-1843
DOI: 10.1007/s12008-022-01152-0
Google Scholar
[13]
SAE International Material Specification, AMS7004 Titanium alloy preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on substrate Ti-6Al-4V stress relieved, 2019
DOI: 10.4271/AMS7004
Google Scholar
[14]
S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Mater. Des. 95 (2016) 127–132
DOI: 10.1016/J.MATDES.2016.01.092
Google Scholar
[15]
C. Arévalo, I. Montealegre-Meléndez, E. Ariza-Galván, M. Kitzmantel, C. Rubio-Escudero, E. Neubauer, Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing, Materials 9 (2016) 919
DOI: 10.3390/ma9110919
Google Scholar
[16]
E. Ariza, I. Montealegre-Meléndez, C. Arévalo, M. Kitzmantel, E. Neubauer, Ti/B4C composites prepared by in situ reaction using Inductive Hot Pressing, Key Eng. Mater. 742 (2017) 121–128
DOI: 10.4028/www.scientific.net/KEM.742.121
Google Scholar
[17]
E. Ariza, I. Montealegre Meléndez, C. Arévalo, E.M. Pérez Soriano, E. Neubauer, M. Kitzmantel, Plasma Metal Deposition for Metallic Materials, in: I.V. Shishkovsky (Ed.), Advanced Additive Manufacturing, IntechOpen, London, 2022
DOI: 10.5772/intechopen.101448
Google Scholar
[18]
I. Montealegre-Meléndez, C. Arévalo, A.M. Beltrán, M. Kitzmantel, E. Neubauer, E.M. Pérez Soriano, Reaction layer analysis of in situ reinforced titanium composites: Influence of the starting material composition on the mechanical properties, Metals 10 (2020) 265
DOI: 10.3390/met10020265
Google Scholar
[19]
L. Jia, X. Wang, B. Chen, H. Imai, S. Li, Z. Lu, K. Kondoh, Microstructural evolution and competitive reaction behavior of Ti-B4C system under solid-state sintering, J. Alloys Compd. 687 (2016) 1004–1011
DOI: 10.1016/j.jallcom.2016.06.280
Google Scholar
[20]
I. Montealegre-Meléndez, C. Arévalo, E.M. Pérez-Soriano, M. Kitzmantel, E. Neubauer, Microstructural and XRD analysis and study of the properties of the system Ti-TiAl-B4C processed under different operational conditions, Metals 8(5) (2018) 367
DOI: 10.3390/met8050367
Google Scholar
[21]
L. Jia, S. Li, H. Imai, B. Chen, K. Kondoh, Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti–B4C system under a relatively low temperature, Mater. Sci. Eng. A 614 (2014) 129–135
DOI: 10.1016/j.msea.2014.07.020
Google Scholar
[22]
K. Kondoh, Titanium metal matrix composites by powder metallurgy (PM) routes, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, Oxford, 2015, p.277–297
DOI: 10.1016/B978-0-12-800054-0.00016-2
Google Scholar
[23]
S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB, Mater. Sci. Eng. A 628 (2015) 75–83
DOI: 10.1016/j.msea.2015.01.033
Google Scholar