[1]
R.M.A. Khan, M. Abdelmoula, S. Mekid, Microstructure Evolution in Titanium Alloys and Metal Matrix Composites Manufactured via Powder Bed Fusion: A Comprehensive Review, Arab J Sci Eng 49 (2024) 10251-10286.
DOI: 10.1007/s13369-024-08838-5
Google Scholar
[2]
R. Shetty, A. Hegde, U.K.S. Sv, R. Nayak, N. Naik, M. Nayak, Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review, J Compos Sci 6(12) (2022).
DOI: 10.3390/jcs6120388
Google Scholar
[3]
K. Morsi, V.V. Patel, Processing and properties of titanium-titanium boride (TiB) matrix composites -: a review, J Mater Sci 42(6) (2007) 2037-2047.
DOI: 10.1007/s10853-006-0776-2
Google Scholar
[4]
L.L. Sun, J.S. Cao, L.Y. Li, J.S. Li, J. Wang, Boron-induced microstructure evolution and mechanical properties of in situ Ti-based bulk metallic glass composites, Intermetallics 165 (2024) 0966-9795.
DOI: 10.1016/j.intermet.2023.108156
Google Scholar
[5]
Z.L. Gao, Z. Li, G.Y. Wen, J.Q. Wu, Y. Li, Y.B. Zhao, M. Jin, Investigation of the tribological mechanisms of TiN-ZrO2-B4C ternary ceramic-reinforced copper-metal matrix composites, Tribol Int 196 (2024) 0301-679X.
DOI: 10.1016/j.triboint.2024.109705
Google Scholar
[6]
S. Islak, H. Houssain, N. Emin, H. Yazar, H.C. Danaci, V. Koç, Microstructural, mechanical, and biocompatibility properties of Ti-Cu/B4C composites for biomedical applications, Mater Chem Phys 319 (2024).
DOI: 10.1016/j.matchemphys.2024.129417
Google Scholar
[7]
Y. Gao, Z.D. Liu, Q. Wang, C.C. Liu, Y.M. Sun, Investigation on strengthening and toughening mechanisms of Nb-Ti-ZrB metal matrix ceramic composites reinforced with in situ niobium and titanium boride, Int J Refract Met H 92 (2020).
DOI: 10.1016/j.ijrmhm.2020.105282
Google Scholar
[8]
Q. Li, S. Huang, Y.K. Zhao, Y.M. Gao, U. Ramamurty, Simultaneous enhancements of strength, ductility, and toughness in a TiB reinforced titanium matrix composite, Acta Mater 254 (2023) 1359-6454.
DOI: 10.1016/j.actamat.2023.118995
Google Scholar
[9]
H.D. Wu, Y.F. Han, J.W. Le, N. Zong, S.P. Li, Y.F. Luo, G.F. Huang, J.W. Mao, W.J. Lu, Enhanced strength-ductility synergy in fiber-like structural titanium matrix composites by controlling TiB content, J Alloy Compd 915 (2022) 0925-8388.
DOI: 10.1016/j.jallcom.2022.165399
Google Scholar
[10]
K. Morsi, Review: titanium-titanium boride composites, J Mater Sci 54(9) (2019) 6753-6771.
DOI: 10.1007/s10853-018-03283-w
Google Scholar
[11]
K. Morsi, V.V. Patel, S. Naraghi, J.E. Garay, Processing of titanium-titanium boride dual matrix composites, J Mater Process Tech 196(1-3) (2008) 236-242.
DOI: 10.1016/j.jmatprotec.2007.05.047
Google Scholar
[12]
A.H. Assari, Investigating the deformation behavior of hot-pressed Ti/Al/Ti laminated composite, J Manuf Process 95 (2023) 369-381.
DOI: 10.1016/j.jmapro.2023.04.026
Google Scholar
[13]
Z.Q. Ren, W.Q. Liu, Q. An, X.D. Chen, G.L. Wei, R. Chen, R. Zhang, L.J. Huang, L. Geng, Microstructures and tensile properties of low-cost TiBw/Ti-6Al-4V composites by vacuum reactive hot pressing, Vacuum 211 (2023) 0042-207X.
DOI: 10.1016/j.vacuum.2023.111921
Google Scholar
[14]
C. Cai, S. He, L.F. Li, Q. Teng, B. Song, C.Z. Yan, Q.S. Wei, Y.S. Shi, In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: Microstructure evolution, enhanced tensile properties and strengthening mechanisms, Compos Part B-Eng 164 (2019) 546-558.
DOI: 10.1016/j.compositesb.2019.01.080
Google Scholar
[15]
C. Cai, B. Song, C.L. Qiu, L.F. Li, P.J. Xue, Q.S. Wei, J.X. Zhou, H. Nan, H.X. Chen, Y.S. Shi, Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties, J Alloy Compd 710 (2017) 364-374.
DOI: 10.1016/j.jallcom.2017.03.160
Google Scholar
[16]
O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, O.B. Bondarchuk, Role of Surface Contamination in Titanium PM, Key Eng Mater 520 (2012) 121-+.
DOI: 10.4028/www.scientific.net/kem.520.121
Google Scholar
[17]
O.M. Ivasishin, D.G. Savvakin, N.M. Gumenyak, Dehydrogenation of Titanium-Hydride Powder and Role of This Process in a Sintering Activation, Metallofiz Nov Tekh+ 33(7) (2011) 899-917.
Google Scholar
[18]
D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, O.H. Molyar, Role of Hydrogen in the Process of Sintering of Titanium Powders, Mater Sci+ 47(5) (2012) 651-661.
DOI: 10.1007/s11003-012-9440-y
Google Scholar
[19]
Y. Song, G. Ma, F. Qiu, O. Stasiuk, D. Savvakin, O. Ivasishin, X. Xu, T. Cheng, Nearly dense Ti–6Al–4V/TiB composites manufactured via hydrogen assisted BEPM, Ceram Int 48(8) (2022) 10902-10910.
DOI: 10.1016/j.ceramint.2021.12.308
Google Scholar
[20]
Y. Song, F. Qiu, D. Savvakin, X. Xu, O. Stasiuk, O. Ivasishin, T. Cheng, In Situ Ti6Al4V/TiB Composites Prepared by Hydrogen-Assisted Sintering of Blends Containing TiH2 and Ball-Milled Ti+TiB2 Powders, Materials 15(3) (2022) 1049.
DOI: 10.3390/ma15031049
Google Scholar
[21]
Y.C. Song, T. Cheng, C. Wang, O. Stasiuk, D. Savvakin, O. Ivasishin, Microstructural Characteristics of Ti-Based Composites with Various Ceramic Reinforcements Manufactured via Hydrogen-Assisted Blended Elemental Powder Metallurgy, Adv Eng Mater 25(5) (2023) 1438-1656.
DOI: 10.1002/adem.202370019
Google Scholar
[22]
Y.C. Song, S.C. Dong, O. Stasiuk, D. Savvakin, O. Ivasishin, Synthesis of Ti/TiB Composites via Hydrogen-Assisted Blended Elemental Powder Metallurgy, Front Mater 7 (2020) 2296-8016.
DOI: 10.3389/fmats.2020.572005
Google Scholar