Recent Developments in Producing Highly Dense Ti Matrix Composites via Powder Metallurgy Approaches

Article Preview

Abstract:

Titanium matrix composites (TMCs) have found extensive application in aerospace, biomedical, and military sectors due to their exceptional strength-to-weight ratio and wear resistance at ambient and elevated temperatures. Nevertheless, conventional production methods often face a compromise between cost and performance, thus limiting the suitability of this material for broad utilization in engineering contexts. Recent research findings indicate that the utilization of manufacturing techniques such as hydrogen assisted blended elemental powder metallurgy (HABEPM) with the incorporation of a double press-and-sinter option, as well as the sintering of powder blends that have been preliminarily activated through milling, can both serve as economically viable methods for the production of highly dense TMCs with satisfactory mechanical properties. Both methods guarantee the activation of sintering in powders, resulting in notable improvements in density and a more refined and uniform microstructure compared to porous and nonuniform composites obtained through traditional vacuum sintering of powder blends. This study provides novel insights into the design and production of cost-effective and environmentally friendly TMCs with determined mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1146)

Pages:

31-40

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M.A. Khan, M. Abdelmoula, S. Mekid, Microstructure Evolution in Titanium Alloys and Metal Matrix Composites Manufactured via Powder Bed Fusion: A Comprehensive Review, Arab J Sci Eng 49 (2024) 10251-10286.

DOI: 10.1007/s13369-024-08838-5

Google Scholar

[2] R. Shetty, A. Hegde, U.K.S. Sv, R. Nayak, N. Naik, M. Nayak, Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review, J Compos Sci 6(12) (2022).

DOI: 10.3390/jcs6120388

Google Scholar

[3] K. Morsi, V.V. Patel, Processing and properties of titanium-titanium boride (TiB) matrix composites -: a review, J Mater Sci 42(6) (2007) 2037-2047.

DOI: 10.1007/s10853-006-0776-2

Google Scholar

[4] L.L. Sun, J.S. Cao, L.Y. Li, J.S. Li, J. Wang, Boron-induced microstructure evolution and mechanical properties of in situ Ti-based bulk metallic glass composites, Intermetallics 165 (2024) 0966-9795.

DOI: 10.1016/j.intermet.2023.108156

Google Scholar

[5] Z.L. Gao, Z. Li, G.Y. Wen, J.Q. Wu, Y. Li, Y.B. Zhao, M. Jin, Investigation of the tribological mechanisms of TiN-ZrO2-B4C ternary ceramic-reinforced copper-metal matrix composites, Tribol Int 196 (2024) 0301-679X.

DOI: 10.1016/j.triboint.2024.109705

Google Scholar

[6] S. Islak, H. Houssain, N. Emin, H. Yazar, H.C. Danaci, V. Koç, Microstructural, mechanical, and biocompatibility properties of Ti-Cu/B4C composites for biomedical applications, Mater Chem Phys 319 (2024).

DOI: 10.1016/j.matchemphys.2024.129417

Google Scholar

[7] Y. Gao, Z.D. Liu, Q. Wang, C.C. Liu, Y.M. Sun, Investigation on strengthening and toughening mechanisms of Nb-Ti-ZrB metal matrix ceramic composites reinforced with in situ niobium and titanium boride, Int J Refract Met H 92 (2020).

DOI: 10.1016/j.ijrmhm.2020.105282

Google Scholar

[8] Q. Li, S. Huang, Y.K. Zhao, Y.M. Gao, U. Ramamurty, Simultaneous enhancements of strength, ductility, and toughness in a TiB reinforced titanium matrix composite, Acta Mater 254 (2023) 1359-6454.

DOI: 10.1016/j.actamat.2023.118995

Google Scholar

[9] H.D. Wu, Y.F. Han, J.W. Le, N. Zong, S.P. Li, Y.F. Luo, G.F. Huang, J.W. Mao, W.J. Lu, Enhanced strength-ductility synergy in fiber-like structural titanium matrix composites by controlling TiB content, J Alloy Compd 915 (2022) 0925-8388.

DOI: 10.1016/j.jallcom.2022.165399

Google Scholar

[10] K. Morsi, Review: titanium-titanium boride composites, J Mater Sci 54(9) (2019) 6753-6771.

DOI: 10.1007/s10853-018-03283-w

Google Scholar

[11] K. Morsi, V.V. Patel, S. Naraghi, J.E. Garay, Processing of titanium-titanium boride dual matrix composites, J Mater Process Tech 196(1-3) (2008) 236-242.

DOI: 10.1016/j.jmatprotec.2007.05.047

Google Scholar

[12] A.H. Assari, Investigating the deformation behavior of hot-pressed Ti/Al/Ti laminated composite, J Manuf Process 95 (2023) 369-381.

DOI: 10.1016/j.jmapro.2023.04.026

Google Scholar

[13] Z.Q. Ren, W.Q. Liu, Q. An, X.D. Chen, G.L. Wei, R. Chen, R. Zhang, L.J. Huang, L. Geng, Microstructures and tensile properties of low-cost TiBw/Ti-6Al-4V composites by vacuum reactive hot pressing, Vacuum 211 (2023) 0042-207X.

DOI: 10.1016/j.vacuum.2023.111921

Google Scholar

[14] C. Cai, S. He, L.F. Li, Q. Teng, B. Song, C.Z. Yan, Q.S. Wei, Y.S. Shi, In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: Microstructure evolution, enhanced tensile properties and strengthening mechanisms, Compos Part B-Eng 164 (2019) 546-558.

DOI: 10.1016/j.compositesb.2019.01.080

Google Scholar

[15] C. Cai, B. Song, C.L. Qiu, L.F. Li, P.J. Xue, Q.S. Wei, J.X. Zhou, H. Nan, H.X. Chen, Y.S. Shi, Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties, J Alloy Compd 710 (2017) 364-374.

DOI: 10.1016/j.jallcom.2017.03.160

Google Scholar

[16] O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, O.B. Bondarchuk, Role of Surface Contamination in Titanium PM, Key Eng Mater 520 (2012) 121-+.

DOI: 10.4028/www.scientific.net/kem.520.121

Google Scholar

[17] O.M. Ivasishin, D.G. Savvakin, N.M. Gumenyak, Dehydrogenation of Titanium-Hydride Powder and Role of This Process in a Sintering Activation, Metallofiz Nov Tekh+ 33(7) (2011) 899-917.

Google Scholar

[18] D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, O.H. Molyar, Role of Hydrogen in the Process of Sintering of Titanium Powders, Mater Sci+ 47(5) (2012) 651-661.

DOI: 10.1007/s11003-012-9440-y

Google Scholar

[19] Y. Song, G. Ma, F. Qiu, O. Stasiuk, D. Savvakin, O. Ivasishin, X. Xu, T. Cheng, Nearly dense Ti–6Al–4V/TiB composites manufactured via hydrogen assisted BEPM, Ceram Int 48(8) (2022) 10902-10910.

DOI: 10.1016/j.ceramint.2021.12.308

Google Scholar

[20] Y. Song, F. Qiu, D. Savvakin, X. Xu, O. Stasiuk, O. Ivasishin, T. Cheng, In Situ Ti6Al4V/TiB Composites Prepared by Hydrogen-Assisted Sintering of Blends Containing TiH2 and Ball-Milled Ti+TiB2 Powders, Materials 15(3) (2022) 1049.

DOI: 10.3390/ma15031049

Google Scholar

[21] Y.C. Song, T. Cheng, C. Wang, O. Stasiuk, D. Savvakin, O. Ivasishin, Microstructural Characteristics of Ti-Based Composites with Various Ceramic Reinforcements Manufactured via Hydrogen-Assisted Blended Elemental Powder Metallurgy, Adv Eng Mater 25(5) (2023) 1438-1656.

DOI: 10.1002/adem.202370019

Google Scholar

[22] Y.C. Song, S.C. Dong, O. Stasiuk, D. Savvakin, O. Ivasishin, Synthesis of Ti/TiB Composites via Hydrogen-Assisted Blended Elemental Powder Metallurgy, Front Mater 7 (2020) 2296-8016.

DOI: 10.3389/fmats.2020.572005

Google Scholar