The Effect of a Silane Compatibilizer on 3D-Printed Nylon-Cork Composites

Article Preview

Abstract:

Amongst various strategies to mitigate the environmental impact of non-degradable polymers, the integration of Cork with fossil fuel-derived Nylon is considered an attractive option to develop a lightweight, strong composite. To optimize the integration of these materials for processing as 3D printed structures requires the exploration of functional compatibilizers to enhance the homogeneity and 3D printability of the Nylon-Cork composite. In this paper, Nylon-12 (PA-12) was mixed with cork in varying melted compositions using one coupling agent/stabilizer/compatibilizer, namely: 3-aminopropyl triethoxysilane (APTS), to improve the interfacial bond between the components and amenability for 3D printed composite structures. This paper examines the characteristics of this composite using scanning electron microscope (SEM), rheology experiments and differential scanning calorimetry (DSC). These findings are used to understand and explain the ensuing 3D printed characteristics using the APTS compatibilizer and Nylon-Cork ratios. This work is expected to be critical for developing low-density engineering products using PA-12-Cork composites and for sustainable processing, using 3D printing technologies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1149)

Pages:

65-70

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V., Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles 2018, 47 (8), 2153-2183.

DOI: 10.1177/1528083716654468

Google Scholar

[2] Kamarudin, S. H.; Mohd Basri, M. S.; Rayung, M.; Abu, F.; Ahmad, S. b.; Norizan, M. N.; Osman, S.; Sarifuddin, N.; Desa, M. S. Z. M.; Abdullah, U. H.; Mohamed Amin Tawakkal, I. S.; Abdullah, L. C. A Review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers 2022, 14 (17), 3698.

DOI: 10.3390/polym14173698

Google Scholar

[3] Omrani, E.; Menezes, P. L.; Rohatgi, P. K. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal 2016, 19 (2), 717-736.

DOI: 10.1016/j.jestch.2015.10.007

Google Scholar

[4] Mohammed, L.; Ansari, M. N. M.; Pua, G.; Jawaid, M.; Islam, M. S. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015, 2015, 243947.

DOI: 10.1155/2015/243947

Google Scholar

[5] Engel, J. B.; Luchese, C. L.; Tessaro, I. C. Characterization techniques comparison towards a better understanding of different cork-based stoppers types. Journal of Food Engineering 2022, 328, 111063.

DOI: 10.1016/j.jfoodeng.2022.111063

Google Scholar

[6] Gürgen, S.; Sofuoğlu, M. A. Smart polymer integrated cork composites for enhanced vibration damping properties. Composite Structures 2021, 258, 113200.

DOI: 10.1016/j.compstruct.2020.113200

Google Scholar

[7] Prabhakaran, S.; Krishnaraj, V.; Shankar, K.; Senthilkumar, M.; Zitoune, R. Experimental investigation on impact, sound, and vibration response of natural-based composite sandwich made of flax and agglomerated cork. Journal of Composite Materials 2020, 54 (5), 669-680.

DOI: 10.1177/0021998319871354

Google Scholar

[8] Wang, Q.; Chu, D.; Luo, C.; Lai, Z.; Shang, S.; Rahimi, S.; Mu, J. Transformation mechanism from cork into honeycomb–like biochar with rich hierarchical pore structure during slow pyrolysis. Industrial Crops and Products 2022, 181, 114827.

DOI: 10.1016/j.indcrop.2022.114827

Google Scholar

[9] Fernandes, E. M.; Mano, J. F.; Reis, R. L. Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures 2013, 105, 153-162.

DOI: 10.1016/j.compstruct.2013.05.012

Google Scholar

[10] Wang, A. J.; Liao, K.-S.; Maharjan, S.; Zhu, Z.; McElhenny, B.; Bao, J.; Curran, S. A. Percolating conductive networks in multiwall carbon nanotube-filled polymeric nanocomposites: towards scalable high-conductivity applications of disordered systems. Nanoscale 2019, 11 (17), 8565-8578.

DOI: 10.1039/c9nr00216b

Google Scholar

[11] Wang, A.J.; Maharjan, S.; Liao, K.-S.; McElhenny, B. P.; Wright, K. D.; Dillon, E. P.; Neupane, R.; Zhu, Z.; Chen, S.; Barron, A. R.; Varghese, O. K.; Bao, J.; Curran, S. A. Poly(octadecyl acrylate)-grafted multiwalled carbon nanotube composites for wearable temperature sensors. ACS Applied Nano Materials 2020, 3(3), 2288-2301.

DOI: 10.1021/acsanm.9b02396

Google Scholar

[12] Alghamdi S. S.; Balu R.; Vongsvivut J.; Troung V. K.; Metttu S.; John S.; Choudhury N. R.; Dutta N. K., Exploring the role of compatibilizers in modulating the interfacial phenomena and improving properties of Cork-Nylon Composites, ACS Appl. Polym. Mater. 2023, 5, 9, 6990–7008.

DOI: 10.1021/acsapm.3c01049

Google Scholar