The Influence of Cutting Conditions on Vibration in the Milling Process of Abaca-Glass Fiber Hybrid Composite

Article Preview

Abstract:

Machining processes on hybrid composite materials involve activities such as surface cutting, hole drilling and other cutting processes to achieve final shape and dimension of the composite product. There were several unexpected situations during the process, such as ununiform vibrations due to inconsistent of natural fiber structures and nonideal cutting conditions lead to progressive tool wear and low quality of the cutting surface. In this study, an experimental approach was conducted on the milling process of polyester matrix-based composites reinforced with abaca and glass fibers, produced through the press molding process. The milling process was utilized by a 10 mm diameter 4-flute carbide end mill cutter with a 45-degree helix angle. The study aimed to investigate the influence of cutting conditions (spindle speed, feed, and depth of cut) on vibration during the milling process of abaca-glass fiber composites. Three levels of each cutting parameters were determined based on cutting tool working capabilities, i.e. the spindle speed = 2000, 3000 and 5000 rpm, the feed = 0.004, 0.007 and 0.10 mm/tooth, and depth of cut = 1, 1.5 and 2 mm. The Design of Experiment (DOE) was constructed by Box-Behnken technique of Response Surface Methodology. The down milling process were conducted for all scenario of DOE, and the vibration was measured using a digital accelerometer. The results of the study indicated that vibration increased with the increase of spindle speed, feed, and depth of cut. The results show that the maximum vibration value (0.0206 m/s²) was obtained at a spindle speed of 5000 rpm with a feed of 0.07 mm/tooth and a depth of cut 2 mm. Meanwhile, the minimum vibration value (0.0143 m/s²) was obtained at the spindle speed 2000 rpm, feed 0.04 mm/tooth and depth of cut 1.5 mm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1149)

Pages:

55-64

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Clyne, T. W., & Hull, D. (2019). An introduction to composite materials. Cambridge university press.

Google Scholar

[2] Pakravan, H. R., & Ozbakkaloglu, T. (2019). Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Construction and Building Materials, 207, 491-518.

DOI: 10.1016/j.conbuildmat.2019.02.078

Google Scholar

[3] Iqbal, M., Bahri, S., & Akram, A. (2019, May). Effect of cutting parameter on tool wear of HSS tool in drilling of Kevlar composite panel. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012078). IOP Publishing.

DOI: 10.1088/1757-899x/523/1/012078

Google Scholar

[4] Iqbal, M., Firmansyah, F., Tadjuddin, M., & Abhang, L. B. (2020, August). The investigation of hole delamination in drilling Kevlar composite panel using HSS drill tool. In Defect and Diffusion Forum (Vol. 402, pp.108-114). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ddf.402.108

Google Scholar

[5] Mahir, F. I., Keya, K. N., Sarker, B., Nahiun, K. M., & Khan, R. A. (2019). A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research, 1(2), 86-97.

Google Scholar

[6] Rogovina, S. Z., Prut, E. V., & Berlin, A. A. (2019). Composite materials based on synthetic polymers reinforced with natural fibers. Polymer Science, Series A, 61, 417-438.

DOI: 10.1134/s0965545x19040084

Google Scholar

[7] Firsa, T., Tadjuddin, M., Iqbal, M., & Putra, R. S. (2021). Study of the Sound Absorption Characteristics of Abaca and Coconut Coir Fibers. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering: ICECME 2020, Banda Aceh, October 13–14 (pp.519-531). Springer Singapore.

DOI: 10.1007/978-981-16-0736-3_47

Google Scholar

[8] Gani, A., Ibrahim, M., Ulmi, F., & Farhan, A. (2024). The influence of different fiber sizes on the flexural strength of natural fiber-reinforced polymer composites. Results in Materials, 21, 100534.

DOI: 10.1016/j.rinma.2024.100534

Google Scholar

[9] Bachtiar, D., Siregar, J. P., bin Sulaiman, A. S., & bin Mat Rejab, M. R. (2015). Tensile properties of hybrid sugar palm/kenaf fibre reinforced polypropylene composites. Applied Mechanics and Materials, 695, 155-158.

DOI: 10.4028/www.scientific.net/amm.695.155

Google Scholar

[10] Hadi, A. E., Siregar, J. P., Cionita, T., Norlaila, M. B., Badari, M. A. M., Irawan, A. P., ... & Fitriyana, D. F. (2022). Potentiality of utilizing woven pineapple leaf fibre for polymer composites. Polymers, 14(13), 2744.

DOI: 10.3390/polym14132744

Google Scholar

[11] Rizal, S., Ikramullah, Gopakumar, D. A., Thalib, S., Huzni, S., & Abdul Khalil, H. P. S. (2018). Interfacial compatibility evaluation on the fiber treatment in the Typha fiber reinforced epoxy composites and their effect on the chemical and mechanical properties. Polymers, 10(12), 1316.

DOI: 10.3390/polym10121316

Google Scholar

[12] Iqbal, M., Aminanda, Y., Firsa, T., & Ali, M. (2020). Bending strength of polyester composites reinforced with stitched random orientation and plain weave abaca fiber. In IOP conference series: materials science and engineering (Vol. 739, No. 1, p.012035). IOP Publishing.

DOI: 10.1088/1757-899x/739/1/012035

Google Scholar

[13] Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121.

DOI: 10.1016/j.compositesb.2017.09.008

Google Scholar

[14] Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner production, 172, 566-581.

DOI: 10.1016/j.jclepro.2017.10.101

Google Scholar

[15] Iqbal, M., Firsa, T., Nazaruddin, N., Nasution, I. S., Zulfadhli, Z., Aminanda, Y., ... & Pradana, A. (2023). Tensile Strength of Abaca Fiber Reinforced Polymer Composite Fabricated by Press Method: Effect of Fiber Content and Fiber Orientation. Key Engineering Materials, 951, 73-83.

DOI: 10.4028/p-9tkplc

Google Scholar

[16] Iqbal, M., Aminanda, Y., Firsa, T., Nazaruddin, N., Nasution, I. S., Erawan, D. F., ... & Nasution, A. R. (2023, January). The effect of fiber content and fiber orientation on bending strength of abaca fiber reinforce polymer composite fabricated by press method. In AIP Conference Proceedings (Vol. 2643, No. 1). AIP Publishing.

DOI: 10.1063/5.0110714

Google Scholar

[17] Iqbal, M., Azan, S. A., Rahmadtullah, R., & Abhang, L. B. (2022). Flexural Strength and Physical Properties of Cement Board Reinforced with Abaca Fiber. Key Engineering Materials, 930, 169-178.

DOI: 10.4028/p-zn91x1

Google Scholar

[18] Iqbal, M., Azan, S. A., Dharmawan, M. R., & Abhang, L. B. (2023). Influence of Fiber Content on the Flexural Strength and Physical Properties of Abaca Fiber-Cement-Gypsum Board. Key Engineering Materials, 951, 173-183.

DOI: 10.4028/p-ls56by

Google Scholar

[19] Iqbal, M., Satrianda, M. S., Firsa, T., Azan, S. A., & Abhang, L. B. (2021). Bending Strength of Fiber Metal Laminate Based on Abaca Fiber Reinforced Polyester and Aluminum Alloy Metal Sheet. Key Engineering Materials, 892, 134-141.

DOI: 10.4028/www.scientific.net/kem.892.134

Google Scholar

[20] Morampudi, P., Namala, K. K., Gajjela, Y. K., Barath, M., & Prudhvi, G. (2021). Review on glass fiber reinforced polymer composites. Materials Today: Proceedings, 43, 314-319.

DOI: 10.1016/j.matpr.2020.11.669

Google Scholar

[21] Nazaruddin, N., Akram, A., Hasanuddin, I., Iqbal, M., Kurniawan, R., & Putra, R. (2019, May). Mechanical properties of glass fiber reinforced polyester resin for use as the wall of the Acehnese boat 'Thep-Thep'. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p.012080). IOP Publishing.

DOI: 10.1088/1757-899x/523/1/012080

Google Scholar

[22] Mughal, K. H., Jamil, M. F., Qureshi, M. A. M., Qaiser, A. A., Khalid, F. A., Maqbool, A., ... & Abbas, S. Z. (2023). Investigation of rotary ultrasonic vibration assisted machining of Nomex honeycomb composite structures. The International Journal of Advanced Manufacturing Technology, 129(11), 5541-5560.

DOI: 10.1007/s00170-023-12652-y

Google Scholar

[23] Omar, M. H., Rahim, M. A., Rejab, M. N. A. M., Rani, M. N., & Mutra, R. R. (2023, November). Numerical study on effect of phase angle on torsional vibration in double Cardan joint driveline system. In AIP Conference Proceedings (Vol. 2959, No. 1). AIP Publishing.

DOI: 10.1063/5.0179242

Google Scholar

[24] Mirza, W. W. I., Rani, M. N. B. A., Yunus, M. A., Stancioiu, D., & Shripathi, V. (2021). Estimating rotational frequency response function using mode expansion and frequency response function synthesis method. International Journal of Automotive and Mechanical Engineering, 18(2), 8738-8750.

DOI: 10.15282/ijame.18.2.2021.11.0667

Google Scholar

[25] Chibane, H., Serra, R., & Leroy, R. (2017). Optimal milling conditions of aeronautical composite material under temperature, forces and vibration parameters. Journal of Composite Materials, 51(24), 3453-3463.

DOI: 10.1177/0021998316687626

Google Scholar

[26] Ramli, S. F., Khairussaleh, N. K. M., Mokhtar, S., Dahnel, A. N., & Raof, N. A. (2022). Optimization of machining parameters values during milling on carbon fiber reinforced plastic (CFRP) using RSM. Jurnal Tribologi, 34, 24-38.

Google Scholar