Mechanical and Vibrational Studies on Hybrid Fibre Metal Laminates

Article Preview

Abstract:

Hybrid Fibre Metal Laminates (HFMLs) are composite materials made of alternating layers of metal and fibre-reinforced polymers. The paper discusses the development of HFMLs and their applicability in aerospace applications when compared to conventional FMLs. Experimental (Mechanical and vibrational) studies are conducted to assess the strength and vibrational properties of these materials. Mechanical and vibrational characteristics of the proposed materials are explored and presented. Aluminium 2024 T3 sheets as metal layer and hybrid (glass, carbon) polymer fibre reinforcements are used for developing hybrid lightweight laminates. SEM (scanning electron microscope), and stereomicroscopy are used for microscopic characterization studies and a universal testing machine (UTM) is employed to perform mechanical characterization. The impact behaviour of these materials is also disclosed using the Charpy impact test. An improvement in the strength and vibrational properties are clearly observed in the FMLs after fibre hybridization, which may be due to improved bonding compatibility in carbon prepregs. The outcome of the research contributes to the advancement of lightweight materials for next-generation aerospace structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1149)

Pages:

89-97

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yao, L., Yu, H., Wang, C., He, W.: Thin-Walled Structures Numerical and experimental investigation on the oblique successive impact behavior and accumulated damage characteristics of fibre metal laminates. Thin-Walled Struct. 166, 108033 (2021)

DOI: 10.1016/j.tws.2021.108033

Google Scholar

[2] Fathi, A., Liaghat, G., Sabouri, H., Chizari, M., Hadavinia, H., Chitsaz Charandabi, S.: Experimental investigation of quasi-static behavior of composite and fibre metal laminate panels modified by graphene nanoplatelets. J. Reinf. Plast. Compos. 40, 518–532 (2021)

DOI: 10.1177/0731684420985275

Google Scholar

[3] Sinmazçelik, T., Avcu, E., Bora, M.Ö., Çoban, O.: A review: Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32, 3671–3685 (2011)

DOI: 10.1016/j.matdes.2011.03.011

Google Scholar

[4] Shahgholian-Ghahfarokhi, D., Rahimi, G., Zarei, M., Salehipour, H.: Free vibration analyses of composite sandwich cylindrical shells with grid cores: experimental study and numerical simulation. Mech. Based Des. Struct. Mach. 0, 1–20 (2020)

DOI: 10.1080/15397734.2020.1725565

Google Scholar

[5] Abouhamzeh, M., Nardi, D., Leonard, R., Sinke, J.: Effect of prepreg gaps and overlaps on mechanical properties of fibre metal laminates. Compos. Part A Appl. Sci. Manuf. 114, 258–268 (2018)

DOI: 10.1016/j.compositesa.2018.08.028

Google Scholar

[6] Zhang, X., Zhang, Y., Ma, Q.Y., Dai, Y., Hu, F.P., Wei, G.B., Xu, T.C., Zeng, Q.W., Wang, S.Z., Xie, W.D.: Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate. Appl. Surf. Sci. 396, 1264–1272 (2017)

DOI: 10.1016/j.apsusc.2016.11.131

Google Scholar

[7] Ding, Z., Wang, H., Luo, J., Li, N.: A review on forming technologies of fibre metal laminates. Int. J. Light. Mater. Manuf. 4, 110–126 (2021)

DOI: 10.1016/j.ijlmm.2020.06.006

Google Scholar

[8] Kali, N., Pathak, S., Korla, S.: Effect on vibration characteristics of fibre metal laminates sandwiched with natural fibres. Mater. Today Proc. 28, 1092–1096 (2019)

DOI: 10.1016/j.matpr.2020.01.088

Google Scholar

[9] Botelho, E.C., Silva, R.A., Pardini, L.C., Rezende, M.C.: A review on the development and properties of continuous fibre/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 9, 247–256 (2006)

DOI: 10.1590/S1516-14392006000300002

Google Scholar

[10] Patil, N.A., Mulik, S.S., Wangikar, K.S., Kulkarni, A.P.: Characterization of Glass Laminate Aluminium Reinforced Epoxy- A Review. Procedia Manuf. 20, 554–562 (2018)

DOI: 10.1016/j.promfg.2018.02.083

Google Scholar

[11] Kretsis, G.: A review of the tensile, compressive, flexural, and shear properties of hybrid fibre-reinforced plastics. Composites. 18, 13–23 (1987)

DOI: 10.1016/0010-4361(87)90003-6

Google Scholar

[12] Rajpurohit, A., Joannès, S., Singery, V., Sanial, P., Laiarinandrasana, L.: Hybrid effect in in-plane loading of carbon/glass fibre based inter-and intraply hybrid composites. J. Compos. Sci. 4, 1–20 (2020)

DOI: 10.3390/jcs4010006

Google Scholar

[13] Swolfs, Y., Gorbatikh, L., Verpoest, I.: Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 67, 181–200 (2014)

DOI: 10.1016/j.compositesa.2014.08.027

Google Scholar

[14] Prasad, E.V., Sahu, S.K.: Buckling of fibre metal laminated plates – numerical and experimental studies. Aircr. Eng. Aerosp. Technol. 92, 472–481 (2020)

DOI: 10.1108/AEAT-01-2019-0005

Google Scholar

[15] Kali, N., Korla, R., Korla, S.: Impact Behaviour of Nano-Hybrid (Carbon/Glass) Fibre Metal Laminates: An Experimental Study. Arab. J. Sci. Eng. (2022)

DOI: 10.1007/s13369-022-07317-z

Google Scholar

[16] Raghavendra, G., Ojha, S., Acharya, S.K., Pal, S.K., Ramu, I.: Evaluation of mechanical behaviour of nanometer and micrometer fly ash particle-filled woven bidirectional jute/glass hybrid nanocomposites. J. Ind. Text. 45, 1268–1287 (2016)

DOI: 10.1177/1528083714557058

Google Scholar

[17] Kali, N., Korla, R., Korla, S.: Influence of Nanoparticles on Mechanical Properties of Hybrid Polymer-Layered Fibre Metal Laminates (FMLs). Trans. Indian Inst. Met. (2022)

DOI: 10.1007/s12666-022-02584-8

Google Scholar

[18] Megahed, A.A.E.W., Megahed, M.: Fabrication and characterization of functionally graded nanoclay/glass fibre/epoxy hybrid nanocomposite laminates. Iran. Polym. J. (English Ed. 26, 673–680 (2017)

DOI: 10.1007/s13726-017-0552-y

Google Scholar

[19] Abd El-baky, M.A.: Evaluation of mechanical properties of jute/glass/carbon fibres reinforced hybrid composites. Fibres Polym. 18, 2417–2432 (2017)

DOI: 10.1007/s12221-017-7682-x

Google Scholar

[20] Megahed, M., Abd El-baky, M.A., Alsaeedy, A.M., Alshorbagy, A.E.: An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fibre metal laminate. Compos. Part B Eng. 176, 107277 (2019)

DOI: 10.1016/j.compositesb.2019.107277

Google Scholar

[21] Selmy, A.I., Abd El-baky, M.A., Hegazy, D.A.: Mechanical properties of inter-ply hybrid composites reinforced with glass and polyamide fibres. J. Thermoplast. Compos. Mater. 32, 267–293 (2019)

DOI: 10.1177/0892705717751022

Google Scholar

[22] Merzuki, M.N.M., Rejab, M.R.M., Sani, M.S.M., Zhang, B., Quanjin, M.: Experimental investigation of free vibration analysis on fibre metal composite laminates. J. Mech. Eng. Sci. 13, 5753–5763 (2019)

DOI: 10.15282/jmes.13.4.2019.03.0459

Google Scholar

[23] Huang, C.Y., Tsai, J.L.: Characterizing vibration damping response of composite laminates containing silica nanoparticles and rubber particles. J. Compos. Mater. 49, 545–557 (2015)

DOI: 10.1177/0021998314521257

Google Scholar

[24] Mansour, G., Tsongas, K., Tzetzis, D.: Modal testing of epoxy carbon-aramid fibre hybrid composites reinforced with silica nanoparticles. J. Reinf. Plast. Compos. 35, 1401–1410 (2016)

DOI: 10.1177/0731684416652488

Google Scholar

[25] Krishnasamy, P., Rajamurugan, G., Thirumurugan, M.: Performance of fibre metal laminate composites embedded with AL and CU wire mesh. J. Ind. Text. 1–18 (2020)

DOI: 10.1177/1528083720935570

Google Scholar

[26] Arulmurugan, M., Prabu, K., Rajamurugan, G., Selvakumar, A.S.: Viscoelastic behavior of aloevera/hemp/flax sandwich laminate composite reinforced with BaSO4: Dynamic mechanical analysis. J. Ind. Text. 50, 1040–1064 (2021)

DOI: 10.1177/1528083719852312

Google Scholar

[27] Soric, Z., Galic, J., Rukavina, T.: Determination of tensile strength of glass fibre straps. Mater. Struct. Constr. 41, 879–890 (2008)

DOI: 10.1617/s11527-007-9291-4

Google Scholar

[28] Botelho, E.C., Campos, A.N., De Barros, E., Pardini, L.C., Rezende, M.C.: Damping behavior of continuous fibre/metal composite materials by the free vibration method. Compos. Part B Eng. 37, 255–263 (2005)

DOI: 10.1016/j.compositesb.2005.04.003

Google Scholar