[1]
Akhyar, Akram Tamlicha, Iskandar Hasanuddin, Yusrizal Muchlis, Amir Zaki Mubarak, Azwinur, Teuku Muhammad Yusuf, Asbahrul Amri, (2021). Numerical Analysis of Traditional Aceh Fishing Boat with Various Scenario Loading and Hull Thickness, Manufacturing by Metal Plasma Cutting and Welding. In: Akhyar (eds) Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore
DOI: 10.1007/978-981-16-0736-3_30
Google Scholar
[2]
Akhyar, Akram Tamlicha, Ahmad Farhan, Azwinur, Syukran, Teuku Arif Fadhilah, Teuku Firsa, and Raja Ariffin Raja Ghazilla. 2022. "Evaluation of Welding Distortion and Hardness in the A36 Steel Plate Joints Using Different Cooling Media" Sustainability 14, no. 3: 1405
DOI: 10.3390/su14031405
Google Scholar
[3]
T. Oppenheim et al., "On the correlation of mechanical and physical properties of 6061-T6 and 7249-T76 aluminum alloys," Eng. Fail. Anal., vol. 14, no. 1, p.218–225, 2007.
DOI: 10.1016/j.engfailanal.2005.10.013
Google Scholar
[4]
Wahyudianto A, Ilman MN, Iswanto PT, Kusmono, Akhyar A. The Effect of Tool Rotation Speed on Hardness, Tensile Strength, and Microstructure of Dissimilar Friction Stir Welding of Dissimilar AA5083 and AA6061-T6 Alloys. KEM 2021;892:159–68.
DOI: 10.4028/www.scientific.net/kem.892.159
Google Scholar
[5]
A. K. Singh, V. Dey, and R. N. Rai, "Techniques to improveweld penetration in TIG welding (A review)," Mater. Today Proc., vol. 4, no. 2, p.1252–1259, 2017.
DOI: 10.1016/j.matpr.2017.01.145
Google Scholar
[6]
Sugianto, Riswanda, Harlian K, Akhyar A, Aminur, Arman F. Numerical Simulation of Physical-Mechanical Properties Based on the Composition of GTAW Weld Metal Alloys with Dissimilar Base Metals. KEM 2021;892:150–8.
DOI: 10.4028/www.scientific.net/kem.892.150
Google Scholar
[7]
Y. I. Jie, J. Zhang, S. Cao, and P. Guo, "Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component," Trans. Nonferrous Met. Soc. China, vol. 29, no. 2, p.287–295, 2019.
DOI: 10.1016/s1003-6326(19)64938-1
Google Scholar
[8]
Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, "Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding," J. Mater. Process. Technol., vol. 255, p.161–174, 2018.
DOI: 10.1016/j.jmatprotec.2017.12.006
Google Scholar
[9]
H. Demir and S. Gündüz, "The effects of aging on machinability of 6061 aluminium alloy," Mater. Des., vol. 30, no. 5, p.1480–1483, 2009.
DOI: 10.1016/j.matdes.2008.08.007
Google Scholar
[10]
ASM, Metal Handbook Ninth Edition, Properties and Selection: Nonferrous Alloys and Pure Metals, 2nd ed. Ohio 44073: American Society for Metals, 1989.
Google Scholar
[11]
G. Mathers, The welding of aluminium and its alloys. Woodhead publishing, 2002.
Google Scholar
[12]
W. F. Smith, J. Hashemi, and F. Presuel-Moreno, Foundations of materials science and engineering. Mcgraw-Hill Publishing, 2006.
Google Scholar
[13]
S. R. Low, R. J. Gettings, W. S. Liggett Jr, and J. Song, "Rockwell hardness," 1999.
Google Scholar
[14]
H. Wang, X. Liu, and L. Liu, "Research on laser-TIG hybrid welding of 6061-T6 aluminum alloys joint and post heat treatment," Metals (Basel)., vol. 10, no. 1, p.130, 2020.
DOI: 10.3390/met10010130
Google Scholar
[15]
Wang, Hongyang, Xiaohong Liu, and Liming Liu. 2020. "Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment" Metals 10, no. 1: 130
DOI: 10.3390/met10010130
Google Scholar
[16]
D. Peng, J. Shen, Q. Tang, C. Wu, and Y. Zhou, "Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints," Int. J. Miner. Metall. Mater., vol. 20, no. 3, p.259–265, 2013.
DOI: 10.1007/s12613-013-0721-8
Google Scholar
[17]
J. Ridhwan, J. A. Noor, M. S. Zakaria, Z. Zulfattah, and M. H. M. Hafidzal, "Effect of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy," J. Eng. Technol., vol. 5, no. 1, p.89–98, 2014.
Google Scholar
[18]
A. Naafila, A. Purnowidodo, and P. H. Setyarini, "Pengaruh Waktu Solution Treatment Terhadap Kekuatan Tarik Aluminium Paduan AA 7075-T6," Pros. SENIATI, p.215–220, 2019.
DOI: 10.21776/jrm.v15i1.862
Google Scholar
[19]
I. Kamenichny, A short handbook of heat treatment. Peace, 1969.
Google Scholar
[20]
P. A. Rometsch, Y. Zhang, and S. Knight, "Heat treatment of 7xxx series aluminium alloys—Some recent developments," Trans. Nonferrous Met. Soc. China, vol. 24, no. 7, p.2003–2017, 2014.
DOI: 10.1016/s1003-6326(14)63306-9
Google Scholar
[21]
Y. Li, Z. Shi, J. Lin, Y.-L. Yang, and Q. Rong, "Extended application of a unified creep-ageing constitutive model to multistep heat treatment of aluminium alloys," Mater. Des., vol. 122, p.422–432, 2017.
DOI: 10.1016/j.matdes.2017.03.023
Google Scholar
[22]
J. Fiocchi, A. Tuissi, and C. A. Biffi, "Heat treatment of aluminium alloys produced by laser powder bed fusion: A review," Mater. Des., p.109651, 2021.
DOI: 10.1016/j.matdes.2021.109651
Google Scholar