Bilayer Graphene Optical Modulator Based on Metal-Nanoribbon Integrated Hybrid Plasmonic Waveguide

Article Preview

Abstract:

This study presents a novel contribution to the research of graphene-based electro-optic modulators. In this paper, we numerically demonstrate an ultra-compact and efficient graphene modulator based on metal-nanoribbon integrated hybrid plasmonic waveguide. Benefiting from the good in-plane mode polarization matching and strong hybrid surface plasmon polariton and grapheme interaction, the 10 μm-length modulator can achieve good modulation performance with a wide modulation bandwidth of 41.3 GHz and a low energy consumption of 101 fJ/bit at 1.55 μm. These compact and energy-efficient optical modulators may have broad application prospects in the future optical communication systems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1151)

Pages:

117-121

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sinatkas G, Christopoulos T, Tsilipakos O and Kriezis E E 2021 Journal of Applied Physics 130

Google Scholar

[2] Shi Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L and Pan B 2022 Photonics Research 10 A106

DOI: 10.1364/prj.456772

Google Scholar

[3] Siew S Y, Li B, Gao F, Zheng H Y, Zhang W, Guo P, Xie S W, Song A, Dong B, Luo L W, Li C, Luo X and Lo G Q 2021 Journal of Lightwave Technology 39 4374

DOI: 10.1109/jlt.2021.3066203

Google Scholar

[4] Tait A N, de Lima T F, Nahmias M A, Miller H B, Peng H-T, Shastri B J and Prucnal P R 2019 Physical Review Applied 11

Google Scholar

[5] Timurdogan E, Sorace-Agaskar C M, Sun J, Hosseini E S, Biberman A and Watts M R 2014 Nature Communications 5

DOI: 10.1364/iprsn.2014.jt2b.2

Google Scholar

[6] Wang X, Wang J, Yao Y, Xiao S, Song Q and Xu K 2024 Optics Letters 49 2157

Google Scholar

[7] Sun Z, Martinez A and Wang F 2016 Nature Photonics 10 227

Google Scholar

[8] Li M, Ling J, He Y, Javid U A, Xue S and Lin Q 2020 Nature Communications 11

Google Scholar

[9] Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C and Romagnoli M 2018 Nature Photonics 12 40

DOI: 10.1038/s41566-017-0071-6

Google Scholar

[10] Wu X, Cao Z, Zhao T, Wu Y, Li Z, Doukas S, Lidorikis E, Xue Y, Liu L, Ghaebi O, Soavi G, Lu J, Ni Z and Wang J 2024 Nanoscale Horizons

DOI: 10.1039/d4nh00160e

Google Scholar

[11] Zhang H, Ma Z, Cai L and Zhang L 2024 Optics Letters 49 1337

Google Scholar

[12] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64

DOI: 10.1038/nature10067

Google Scholar

[13] Hanson G W 2008 Journal of Applied Physics 104

Google Scholar

[14] Park H-Y, Jung W-S, Kang D-H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H-Y, Shin B, Lee S and Park J-H 2016 Advanced Materials 28 864

DOI: 10.1002/adma.201503715

Google Scholar

[15] Shiramin L A and Van Thourhout D 2017 Ieee Journal of Selected Topics in Quantum Electronics 23

Google Scholar