[1]
A. Moezzi, A, M. McDonagh, and M. B. Cortie, Zinc oxide particles: Synthesis, properties and applications, Chemical Engineering Journal 185-186 (2012), 1-22.
DOI: 10.1016/j.cej.2012.01.076
Google Scholar
[2]
M. Pirhashemi, A. Habibi-Yangjeh, and S. P. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts, Journal of Industrial and Engineering Chemistry 62 (2018), 1-25.
DOI: 10.1016/j.jiec.2018.01.012
Google Scholar
[3]
Qi, K., Cheng, B., Yu, J., Ho, W., Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds 727 (2017), 792-820
DOI: 10.1016/j.jallcom.2017.08.142
Google Scholar
[4]
T. Saidani, et al., Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol–gel method, Superlattices and Microstructures 88 (2015), 315-322.
DOI: 10.1016/j.spmi.2015.09.029
Google Scholar
[5]
M. J. Sampaio, et al., Ag-loaded ZnO materials for photocatalytic water treatment, Chemical Engineering Journal, 318 (2017), 95-102.
Google Scholar
[6]
M. Sh. Abdel-wahab, et al., Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis, Superlattices and Microstructures, 94 (2016), 108-118.
DOI: 10.1016/j.spmi.2016.03.043
Google Scholar
[7]
G. Baskar, G, Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst, Renewable Energy, 103 (2017),641-646.
DOI: 10.1016/j.renene.2016.10.077
Google Scholar
[8]
P.L Labhane, L.B. Patle, G.H. Sonawane, and S.H. Sonawane, Fabrication of ternary Mn doped ZnO nanoparticles grafted on reduced graphene oxide (RGO) sheet as an efficient solar light driven photocatalyst, Chemical Physics Letters 710 (2018), 70-77.
DOI: 10.1016/j.cplett.2018.08.066
Google Scholar
[9]
C.L. Aquino, M. J. Bongar, A.B. Silvestre, and M.D. Balela, Synthesis of Hematite (α-Fe2O3) Nanostructures by Thermal Oxidation of Iron Sheet for Cr (VI) Adsorption, Key Engineering Materials 775 (2018), 395-401.
DOI: 10.4028/www.scientific.net/kem.775.395
Google Scholar
[10]
M.A. Ahmed, K. E. Rady, K. M. El-Shokrofy, A. A. Arais, and M. S. Shams, The Influence of Zn2+ Ions Substitution on the Microstructure and Transport Properties of Mn-Zn Nanoferrites, Materials Sciences and Applications 05, no. 13 (2014), 932-942.
DOI: 10.4236/msa.2014.513095
Google Scholar
[11]
S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples, Results in Physics 7 (2017), 604-610.
DOI: 10.1016/j.rinp.2017.01.018
Google Scholar
[12]
N. Qin, Q. Xiang, H. Zhao, J. Zhang, and J. Xu, Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties, CrystEngComm 16, no. 30 (2014), 7062.
DOI: 10.1039/c4ce00637b
Google Scholar
[13]
M.D. Balela, R.A. Acedera, C. L. Flores, and C. M. Pelicano, Surface modification of ZnO nanostructured film prepared by hot water oxidation, Surface and Coatings Technology 340 (2018), 199-209.
DOI: 10.1016/j.surfcoat.2018.02.055
Google Scholar
[14]
S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, and M. Maaza, Microwave Synthesis of Simonkolleite Nanoplatelets on 3D Nickel Foam-graphene for Supercapacitor Applications, Energy Procedia 88 (2016), 614-618.
DOI: 10.1016/j.egypro.2016.06.087
Google Scholar
[15]
H.Tanaka, et al., Synthesis and characterization of layered zinc hydroxychlorides, Journal of Solid State Chemistry, 180, 7 (2007), 2061-2066.
DOI: 10.1016/j.jssc.2007.05.001
Google Scholar