[1]
J. Iwaszko, New Trends in Friction Stir Processing: Rapid Cooling – a Review, Trans. Indian Inst. Met. 75 (2022) 1681-1693
DOI: 10.1007/s12666-022-02552-2
Google Scholar
[2]
M. S. Weglowski, Friction stir processing–State of the art, Arch. Civ. Mech. Eng. 18 (1) (2018) 114-129
DOI: 10.1016/j.acme.2017.06.002
Google Scholar
[3]
M. S. Patel, R. J. Immanuel, A. Rahaman, M. F. Khan and M. Jouiad, Critical Review of Advanced Cooling Strategies in Friction Stir Processing for Microstructural Control, Crystals 14 (2024) 655
DOI: 10.3390/cryst14070655
Google Scholar
[4]
A. T. Silvesti, G. Parodo, F. Napolitano et al., Cold formability of friction stir processed 5754H111 and 6082-T6 aluminum alloys: an experimental and numerical study, Int. J. Adv. Manuf. Tech. 131 (2024) 3851-3869
DOI: 10.1007/s00170-024-13218-2
Google Scholar
[5]
Z. Y. Ma, A. H. Feng, D. L. Chen and J. Shen, Recent Advances in Friction Stir Welding/processing of aluminum Alloys, Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci. 43 (4) (2017) 269-333
DOI: 10.1080/10408436.2017.1358145
Google Scholar
[6]
A. T Silvestri, A. El Hassanin, G. de Alteriis and A. Astarita, Energy Consumption and Tool Condition in Friction Stir processing of Aluminum Alloys, Int. J. Precis. Eng. Manuf. – Green Technol. (2024)
DOI: 10.1007/s40684-024-00633-9
Google Scholar
[7]
K. C. Rathinasuriyan and V. S. S. Kumar, Submerged Friction Stir Welding and Processing: Insights of Other Researchers, Int. J. Appl. Eng. Res. 10 (2015) 8
Google Scholar
[8]
K. Li, X. Liu and Y. Zhao, Research status and prospect of friction stir processing technology, Coatings 9 (2019) 129
DOI: 10.3390/coatings9020129
Google Scholar
[9]
R. A. Kumar, R. G. A. Kumar, K. A. Ahamed, B. D. Alstyn and V. Vignesh, Review of friction stir processing of aluminium alloys, Mater. Today Proc. 16 (2019) 1048–1054
DOI: 10.1016/j.matpr.2019.05.194
Google Scholar
[10]
A. K. Srivastava, A. R. Dixit, M. Maurya et al., 20th Century Uninterrupted Growth in Friction Stir Processing of Lightweight Composites and Alloys, Mater. Chem. Phys. 266 (2021) 124572
DOI: 10.1016/j.matchemphys.2021.124572
Google Scholar
[11]
A. Heidarzadeh, S. Mironov, R. Kaibyshev et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci. 117 (2021) 100752
DOI: 10.1016/j.pmatsci.2020.100752
Google Scholar
[12]
V. Patel, W. Li, A. Vairis and V. Badheka, Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement, Crit. Rev. Solid State Mater. Sci. 44 (2019) 378–426
DOI: 10.1080/10408436.2018.1490251
Google Scholar
[13]
Z. Y. Ma, A. H. Feng, D. L. Chen and J. Shen, Recent Advances in Friction Stir Welding/ Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci. 43 (2018), 4
DOI: 10.1080/10408436.2017.1358145
Google Scholar
[14]
M. M. El-Sayed, A.Y. Shash, M. Abd-Rabou and M.G. ElSherbiny, Welding and processing of metallic materials by using friction stir technique: A review, J. Adv. Join. Process. (2021) 3 100059
DOI: 10.1016/j.jajp.2021.100059
Google Scholar
[15]
G. Chunling, W. Beibei, Y. Chao, Z. Qizhong, R. Yuelu, X. Peng, N. Dingrui and M. Zongyi, Effect of multipass submerged friction stir processing on the microstructure, mechanical properties and corrosion resistance of 5383Al alloy, J. Mater. Process. Technol., 328 (2024), 118416.
DOI: 10.1016/j.jmatprotec.2024.118416
Google Scholar