Beta-Cyclodextrin Inclusion Complexes of Rose Oil and Rose Extract: Preparation and Physical Properties

Article Preview

Abstract:

This study aimed to develop microcapsules of rose oil (RO)-β-cyclodextrin and rose extract (RE)-β-cyclodextrin using an optimized co-precipitation method. RO and RE were obtained via solvent-free microwave extraction (SFME), yielding 0.25% and 6.36%, respectively. The antioxidant activities and total phenolic contents of RO and RE were analyzed before microencapsulation. Results showed that RO and RE had IC50 antioxidant values of 6.22 µg/mL and 5.13 µg/mL, compared to Trolox at 4.67 µg/mL. Additionally, the total phenolic contents of RO and RE were found to be 215.46 ± 0.4 and 441.23 ± 1.2 mg GAE/g extract, respectively. The influence of varying ethanol concentrations (20%, 30%, 40%, and 50% v/v) on encapsulation efficiency was thoroughly investigated. Using β-cyclodextrin as the encapsulating agent, a 40% ethanol concentration provided high encapsulation efficiencies, with microcapsule recovery rates of 84.23% and 81.55%, and encapsulation efficiencies of 72.36% and 71.26% for RO and RE, respectively. Characterization of β-cyclodextrin inclusion complexes of RO and RE through scanning electron microscopy (SEM), fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal analysis (DSC, TGA) revealed significant changes in FTIR spectra, XRD, SEM and thermal analysis, indicating complexations of β-cyclodextrin with RO and RE. Antioxidant activities and total phenolic contents of the optimized microcapsules, prepared using 40% ethanol concentration, were assessed after storage of microcapsules for 1 month, showing that the microcapsules effectively stabilized RO and RE over time. These findings suggest that RO and RE inclusion complexes with β-cyclodextrin could be promising bioactive materials for developing functional foods, beverages, and cosmetics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1161)

Pages:

87-95

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Fazili, I.B. Ganie, Q.P. Hassan, Studies on pharmacological, integrated pest management and economic importance of Rosa damascene L., S. Afr. J. 174 (2024) 534-541.

DOI: 10.1016/j.sajb.2024.08.032

Google Scholar

[2] A. Filly, X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, F. Chemat, Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale, Food. Chem. 150 (2014) 193-198.

DOI: 10.1016/j.foodchem.2013.10.139

Google Scholar

[3] C. Villa, F.S.R. Della Cuna, E. Russo, M.F. Ibrahim, E. Grignani, S. Preda, Microwave-assisted and conventional extractions of volatile compounds from Rosa x damascena Mill. fresh petals for cosmetic applications, Molecules. 27(12) (2022) 3963.

DOI: 10.3390/molecules27123963

Google Scholar

[4] J. Ma, J. Fan, Y. Xia, X. Kou, Q. Fe, Y. Zhao, Review preparation of aromatic b-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review, Carb. Poly. 308 (2023) 120661.

DOI: 10.1016/j.carbpol.2023.120661

Google Scholar

[5] Z. Alizadeh, M. Fattahi, Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated damask rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition, Sci. Hortic. 288 (2012) 110341.

DOI: 10.1016/j.scienta.2021.110341

Google Scholar

[6] P. Kong, J.P. Abe, S. Masuo, T. Enomae, Preparation and characterization of tea tree oil- 𝛽-cyclodextrin microcapsules with super-high encapsulation efficiency, J. Bioresour. Bioprod. 8 (2023) 224-234.

DOI: 10.1016/j.jobab.2023.03.004

Google Scholar

[7] L.W. Jiang, P.Z. Wang, L.H. Kou, H.Y. Wei, L.L. Ren, J. Zhou, Preparation and physicochemical properties of catechin/ 𝛽-cyclodextrin inclusion complex nanoparticles, Food Biophys. 16 (2021) 317-324.

DOI: 10.1007/s11483-021-09672-0

Google Scholar

[8] M. Kotronia, E. Kavetsou, S. Loupassaki, S. Kikionis, S. Vouyiouka, A. Detsi, Encapsulation of oregano (Origanum onites L.) essential oil in 𝛽-cyclodextrin (𝛽-CD): synthesis and characterization of the inclusion complexes. Bioeng. 4 (2017) 74.

DOI: 10.3390/bioengineering4030074

Google Scholar

[9] N. Barbieri, A. Sanchez-Contreras, A. Canto, J.V. Cauich-Rodriguez, R. Vargas-Coronado, L.M. Calvo-Irabien, Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil, Ind. Crops Prod. 121 (2018) 114-123.

DOI: 10.1016/j.indcrop.2018.04.081

Google Scholar

[10] M.A. Anaya-Castro, J.F. Ayala-Zavala, L. Muñoz-Castellanos, L. Hernández-Ochoa, J. Peydecastaing, V. Durrieu, 𝛽-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: preparation, physicochemical and antimicrobial characterization. Food. Packag. Shelf Life 14 (2017) 96-101.

DOI: 10.1016/j.fpsl.2017.09.002

Google Scholar

[11] R.L. Abarca, F.J. Rodríguez, A. Guarda, M.J. Galotto, J.E. Bruna, Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component, Food. Chem.196 (2016) 968-975.

DOI: 10.1016/j.foodchem.2015.10.023

Google Scholar

[12] J. Wang, Y.P. Cao, B.G. Sun, C.T. Wang, Physicochemical and release characterization of garlic oil-𝛽-cyclodextrin inclusion complexes, Food Chem. 127 (2011) 1680-1685.

DOI: 10.1016/j.foodchem.2011.02.036

Google Scholar

[13] P. Wen, D.H. Zhu, K. Feng, F.J. Liu, W.Y. Lou, N. Li, M.H. Zong, H. Wu, Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/𝛽-cyclodextrin inclusion complex for antimicrobial packaging, Food Chem. 196 (2016) 996-1004.

DOI: 10.1016/j.foodchem.2015.10.043

Google Scholar

[14] Y. Ogata, Y. Inoue, N. Ikeda, I. Murata, I. Kanamoto, Improvement of stability due to a cyclamen aldehyde/ β-cyclodextrin inclusion complex, J. Mol. Struct. 1215 (2020) 128161.

DOI: 10.1016/j.molstruc.2020.128161

Google Scholar

[15] O. Valarini Junior, J.H. Dantas, C.E. Bar.o, E.F. Zanoelo, L. Cardozo-Filho, F.F. Moraes, Formation of inclusion compounds of (+)catechin with β-cyclodextrin in different complexation media: Spectral, thermal and antioxidant properties, J. Supercrit. Fluids. 121 (2017) 10-18.

DOI: 10.1016/j.supflu.2016.06.005

Google Scholar

[16] G.C. Pante, J.C Castro, R.S. Lini, J.C.Z. Romoli, T.Y. Pires, F.P. Garcia, C.V. Nakamura, A.C.N. Mulati, G. Matioli, M.M. Junior, Inclusion complexes of Litsea cubeba (Lour.) Pers essential oil into β-cyclodextrin: Preparation, physicochemical characterization, cytotoxicity and antifungal activity, Molecules. 29 (2024) 1626.

DOI: 10.3390/molecules29071626

Google Scholar

[17] Y. Wang, C. Yin, X. Cheng, G. Li, S. Yang, X. Zhu, β-cyclodextrin inclusion complex containing Litsea cubeba essential oil: Preparation, optimization, physicochemical, and antifungal characterization, Coatings. 10 (2020) 850.

DOI: 10.3390/coatings10090850

Google Scholar