[1]
S. Matthews, CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures, J. Build. Apprais. 3 (2007) 6–20.
DOI: 10.1057/palgrave.jba.2950063
Google Scholar
[2]
G. Tilly, J. Jacobs, Concrete Repairs: Performance in Service and Current Practice, 2007.
Google Scholar
[3]
H. Beushausen, C. Masuku, P. Moyo, Relaxation characteristics of cement mortar subjected to tensile strain, Mater. Struct. 45 (2012) 1181–1188.
DOI: 10.1617/s11527-012-9825-2
Google Scholar
[4]
R. Rixom, N. Mailvaganam, Chemical Admixtures for Concrete, Third Edit, E & FN Spon, 1999.
Google Scholar
[5]
D. Shen, W. Wang, Q. Li, P. Yao, G. Jiang, Early-age behavior and cracking potential of fly ash concrete under restrained condition, Mag. Concr. Res. 72 (2018) 246–261.
DOI: 10.1680/jmacr.18.00106
Google Scholar
[6]
D. Shen, Y. Jiao, J. Kang, Z. Feng, Y. Shen, Influence of ground granulated blast furnace slag on early-age cracking potential of internally cured high performance concrete, Constr. Build. Mater. 233 (2020) 117083.
DOI: 10.1016/j.conbuildmat.2019.117083
Google Scholar
[7]
D. Shen, J. Kang, X. Yi, L. Zhou, X. Shi, Effect of double hooked-end steel fiber on early-age cracking potential of high strength concrete in restrained ring specimens, Constr. Build. Mater. 223 (2019) 1095–1105.
DOI: 10.1016/j.conbuildmat.2019.07.319
Google Scholar
[8]
P.A. Arito, Influence of Mix Design Parameters on Restrained Shrinkage Cracking in Non-Structural Concrete Patch Repair Mortars, PhD Thesis, Univ. Cape T. (2018) 299. https://open.uct.ac.za/bitstream/handle/11427/27879/thesis_ebe_2018_arito_philemon.pdf?sequence=1.
DOI: 10.1016/j.conbuildmat.2018.04.099
Google Scholar
[9]
H. Beushausen, P. Arito, The influence of mix composition, w/b ratio and curing on restrained shrinkage cracking of cementitious mortars, Constr. Build. Mater. 174 (2018) 38–46.
DOI: 10.1016/j.conbuildmat.2018.04.099
Google Scholar
[10]
M. Gillmer, H. Beushausen, The use of superabsorbent polymers to reduce cracking of bonded mortar overlays, Cem. Concr. Compos. 52 (2014) 1–8.
DOI: 10.1016/j.cemconcomp.2014.03.009
Google Scholar
[11]
T. Dittmer, H. Beushausen, The effect of coarse aggregate content and size on the age at cracking of bonded concrete overlays subjected to restrained deformation, Constr. Build. Mater. 69 (2014) 73–82.
DOI: 10.1016/j.conbuildmat.2014.06.056
Google Scholar
[12]
H. Beushausen, N. Bester, The influence of curing on restrained shrinkage cracking of bonded concrete overlays, Cem. Concr. Res. 87 (2016) 87–96.
DOI: 10.1016/j.cemconres.2016.05.007
Google Scholar
[13]
J.B. Kardon, Polymer-Modified Concrete: Review, J. Mater. Civ. Eng. 9 (1997) 85–92.
DOI: 10.1061/(ASCE)0899-1561(1997)9:2(85)
Google Scholar
[14]
P.A. Arito, H. Beushausen, M.G. Alexander, An experimental investigation into the effects of water and binder-related parameters on restrained shrinkage cracking in concrete patch repair mortars, in: Michael Grantham (Ed.), Concr. Solut. - Proc. Concr. Solut. 6th Int. Conf. Concr. Repair, 2016, Taylor & Francis, Thessaloniki, 2016: p.247–252.
DOI: 10.1201/b18972-93
Google Scholar
[15]
P.A. Arito, H.-D. Beushausen, M.G. Alexander, Towards improved cracking resistance in concrete patch repair mortars, in: D.F.A.M.M.P.B. Hans (Ed.), Proc. 4th Int. Conf. Concr. Repair, Rehabil. Retrofit. ICCRRR 2015, Leipzig, 2016: p.657–662.
DOI: 10.1201/b18972-93
Google Scholar
[16]
D. Shen, C. Liu, C. Li, X. Zhao, G. Jiang, Influence of Barchip fiber length on early-age behavior and cracking resistance of concrete internally cured with super absorbent polymers, Constr. Build. Mater. 214 (2019) 219–231.
DOI: 10.1016/j.conbuildmat.2019.03.209
Google Scholar
[17]
D. Shen, X. Liu, Q. Li, L. Sun, W. Wang, Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber, Constr. Build. Mater. 196 (2019) 307–316.
DOI: 10.1016/j.conbuildmat.2018.10.125
Google Scholar
[18]
H. Beushausen, M. Chilwesa, Assessment and prediction of drying shrinkage cracking in bonded mortar overlays, Cem. Concr. Res. 53 (2013) 256–266.
DOI: 10.1016/j.cemconres.2013.07.008
Google Scholar
[19]
Y. Ohama, Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology, Noyes Publications, 1995.
Google Scholar
[20]
Y. Ohama, Polymer-based admixtures, Cem. Concr. Compos. 20 (1998) 189–212.
DOI: 10.1016/S0958-9465(97)00065-6
Google Scholar
[21]
Y. Ohama, Concrete-Polymer Composites – The Past, Present and Future, Key Eng. Mater. 466 (2011) 1–14.
DOI: 10.4028/www.scientific.net/KEM.466.1
Google Scholar
[22]
M. Miller, Polymers in Cementitious Materials, Rapra Technology Limited, 2005.
Google Scholar
[23]
P.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, Third, McGraw-Hill, 2006.
Google Scholar
[24]
R.S. Ayyar, S.N. Joshi, Effect of Temperature on the Creep Behaviour of Polymer Mortars, in: H.R. Sasse (Ed.), Adhes. between Polym. Concr. / Adhésion Entre Polymères Bét., Springer US, Boston, MA, 1986: p.75–84.
DOI: 10.1007/978-1-4899-3454-3_8
Google Scholar
[25]
M. Ramli, A. Akhavan Tabassi, Effects of Different Curing Regimes on Engineering Properties of Polymer-Modified Mortar, J. Mater. Civ. Eng. 24 (2012) 468–478.
DOI: 10.1061/(ASCE)MT.1943-5533.0000394
Google Scholar
[26]
R. Boyd, G. Smith, Polymer Dynamics and Relaxation, Cambridge University Press, Cambridge, 2007.
DOI: 10.1017/CBO9780511600319
Google Scholar
[27]
J.M. Gao, C.X. Qian, B. Wang, K. Morino, Experimental study on properties of polymer-modified cement mortars with silica fume, Cem. Concr. Res. 32 (2002) 41–45.
DOI: 10.1016/S0008-8846(01)00626-3
Google Scholar
[28]
J. Schulze, O. Killermann, Long-term performance of redispersible powders in mortars, Cem. Concr. Res. 31 (2001) 357–362.
DOI: 10.1016/S0008-8846(00)00498-1
Google Scholar
[29]
ASTM, C 192: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, 2013.
Google Scholar
[30]
M. Alexander, Y. Ballim, J. Mackechnie, Durability Index Testing Procedure Manual Ver 2.0., 2010.
Google Scholar
[31]
SABS, SANS 5863: Concrete Tests - Compressive strength of hardened concrete, 2006.
Google Scholar
[32]
British Standards Institution BSI, Testing concrete, Part 121 - 1983. https://doi.org/Construction Standard, CS1:2010.
Google Scholar
[33]
SABS, SANS 6085: Concrete Tests - Initial Drying Shrinkage and Wetting Expansion of Concrete, 2006.
Google Scholar
[34]
ASTM, C 1581: Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage, 2004.
DOI: 10.1520/c1581_c1581m-16
Google Scholar
[35]
BSI, BS EN 1504-3: Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 3: Structural and non-structural repair, 2005.
DOI: 10.3403/30045530
Google Scholar
[36]
A. Soufi, P.-Y. Mahieux, A. Aït-Mokhtar, O. Amiri, Influence of polymer proportion on transfer properties of repair mortars having equivalent water porosity, Mater. Struct. 49 (2016) 383–398.
DOI: 10.1617/s11527-014-0504-3
Google Scholar
[37]
E.G. Chorinsky, Repair of Concrete Floors with Polymer Modified Cement Mortars, in: H.R. Sasse (Ed.), Adhes. between Polym. Concr. / Adhésion Entre Polymères Bét., Springer US, Boston, MA, 1986: p.230–234. https://doi.org/10.1007/978-1-4899-3454-3\_25.
DOI: 10.1007/978-1-4899-3454-3_25
Google Scholar
[38]
U.T. Bezerra, R.M. Ferreira, J.P. Castro-Gomes, The Effect of Latex and Chitosan Biopolymer on Concrete Properties and Performance, Key Eng. Mater. 466 (2011) 37–46.
DOI: 10.4028/www.scientific.net/KEM.466.37
Google Scholar
[39]
J.C. Amba, J.P. Balayssac, C.H. Détriché, Characterisation of differential shrinkage of bonded mortar overlays subjected to drying, Mater. Struct. 43 (2009) 297–308.
DOI: 10.1617/s11527-009-9489-8
Google Scholar
[40]
K.A. Bode, A. Dimmig-Osburg, Shrinkage Properties of Polymer-Modified Cement Mortars (PCM), Key Eng. Mater. 466 (2011) 29–36. https://doi.org/10.4028/www.scientific.net/ KEM.466.29.
DOI: 10.4028/www.scientific.net/kem.466.29
Google Scholar
[41]
E. Knapen, D. Van Gemert, Microstructural Analysis of Paste and Interfacial Transition Zone in Cement Mortars Modified with Water-Soluble Polymers, Key Eng. Mater. 466 (2011) 21–28.
DOI: 10.4028/www.scientific.net/KEM.466.21
Google Scholar