[1]
R.C. Arum, C. Arum, S.A Alabi, The Highs and Lows of Incorporating Pozzolans into Concrete and Mortar: A Review on Strength and Durability, Nigerian Journal of Technology (NIJOTECH), 41 (2022) 197 –211.
DOI: 10.4314/njt.v41i2.1
Google Scholar
[2]
J.A Adebola, C.M. Ikumapayi, C. Arum, Effectiveness of Rice Husk and Sugarcane Bagasse Ashes Blended Cement in Improving Properties of Concrete, Journal of Materials Science and Chemical Engineering, 11 (2023) 1-19.
DOI: 10.4236/msce.2023.118001
Google Scholar
[3]
M. Adeshokan, C. Arum, Comparison between the Compressive Strength of Binary and Ternary Alkaline activated Pozzolanic Concrete, Journal of Applied Science and Environmental Management, 27 (2023) 747-752.
DOI: 10.4314/jasem.v27i4.15
Google Scholar
[4]
C. Arum, S.P Akande, S.A. Alabi, Strength Evaluation of Pozzolanic Concrete Containing Calcined Ceramic Waste and Glass Waste Powder, Journal of Engineering and Engineering Technology, 16 (2022) 113-119.
DOI: 10.51459/futajeet.2022.16.1.420
Google Scholar
[5]
O. Babatola, C. Arum, Determination of the Compressive Strength of Concrete from Binary Cement and Ternary Aggregates, Open Journal of Civil Engineering, 3 (2020) 10-21.
DOI: 10.4236/ojce.2020.104029
Google Scholar
[6]
R.R. Bellum, R. Nerella, S.R.C. Madduru, C.S.R. Indukuri, Mix design and mechanical properties of fly ash and GGBFS-synthesized alkali-activated concrete (AAC), Infrastructures, 4 (2019) 20-29.
DOI: 10.3390/infrastructures4020020
Google Scholar
[7]
T. Andrew, O.O. Omotayo, C. Arum, C.M. Ikumapayi, C. M. (2023). Effects of Sodium Carbonate Admixture and Mix Design Ratios on the Compressive Strength of Concrete, Nigerian Journal of Technology (NIJOTECH), 42 (2019) 185 -190.
DOI: 10.4314/njt.v42i2.4
Google Scholar
[8]
H. Bilal, M. Yaqub, S.K.U. Rehman, M. Abid, R. Alyousef, H. Alabduljabbar, F. Aslam, Performance of Foundry Sand Concrete under Ambient and Elevated Temperatures. Materials, 12 (2022) 2645-2656.
DOI: 10.3390/ma12162645
Google Scholar
[9]
E.H. Chang, P. Sarker, N. Lloyd, B.V. Rangan, Bond behaviour of reinforced fly ash-based geopolymer concrete beams. In Proceedings of the 24th Biennial Conference of the Concrete Institute Australia, Sydney, Australia, (2019).
Google Scholar
[10]
C.B Cheah, L.E. Tan, M. RaLPi, The engineering properties and microstructure of sodium carbonate activated fly ash/slag blended mortars with silica fume, Compos. Part. B Eng., 160 (2019) 558–572.
DOI: 10.1016/j.compositesb.2018.12.056
Google Scholar
[11]
M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Constr. Build. Mater. 40 (2013): 291–298.
DOI: 10.1016/j.conbuildmat.2012.11.003
Google Scholar
[12]
R.K. Chouhan, M. Mudgal, A. Bisarya, A.K. Srivastava, Rice-husk-based superplasticizer to increase performance of fly ash geopolymer concrete. Emerging Materials Research, 1 (2022) 6-15.
DOI: 10.1680/jemmr.18.00035
Google Scholar
[13]
J. Davidovits, Geopolymers: Inorganic polymeric new materials, J. Therm. Anal. Calorim., 37 (1991) 1633–1656.
Google Scholar
[14]
J. Davidovits, High-alkali cements for 21st century concretes, Spec. Publ., 142 (1994)383-398.
Google Scholar
[15]
J. Davidovits, Geopolymers: Inorganic Polymeric New Materials, Journal of Thermal Analysis, 37 (1991), 1633-1656.
DOI: 10.1007/bf01912193
Google Scholar
[16]
F. Faluyi, C. Arum, C.M. Ikumapayi, S.A. Alabi, Review of the Compressive Strength Predictor Variables of Geopolymer Concrete. FUOYE Journal of Engineering and Technology, 7 (2022a) 1-11.
DOI: 10.46792/fuoyejet.v7i3.884
Google Scholar
[17]
F. Faluyi, C. Arum, C.M. Ikumapayi, S.A Alabi, Effects of partially replacing sand with laterite on compressive strength of hybrid OPC - activated metakaolin concrete, Dsia-Pacific Journal of Science and Technology, Asia-Pacific Journal of Science and Technology, 28 (2022b). 1-9.
Google Scholar
[18]
F. Fan, Z. Liu, G. Xu, H. Peng, C. Cai, Mechanical and thermal properties of fly ash based geopolymers, Constr. Build. Mater., 160 (2018) s66–81.
DOI: 10.1016/j.conbuildmat.2017.11.023
Google Scholar
[19]
P.S. Deb, P.K. Sarker, Durability properties of geopolymer concrete with flyash and metakaolin. Int. J. Sci. Technol. Res., 9 (2020) 256–260.
Google Scholar
[20]
I. Handayani, S. Aprilia, A. Abdullah, C. Rahmawati, A.M. Mustafa, A. Al Bakri, I.H. Aziz, E.A. Azimi, Synthesis of Sodium Silicate from Rice Husk Ash as an Activator to Produce Epoxy, Geopolymer Cement, 1 (2021) 1-14.
DOI: 10.1088/1742-6596/1845/1/012072
Google Scholar
[21]
A. Hassan, M. Arif, M. Shariq, Influence of microstructure of geopolymer concrete on its mechanical properties a review, Advances in Sustainable Construction Materials and Geotechnical Engineering, 1 (2020a) 119-129.
DOI: 10.1007/978-981-13-7480-7_10
Google Scholar
[22]
A. Hassan, M. Arif, M. Shariq, A review of properties and behaviour of reinforced geopolymer concrete structural elements—A clean technology option for sustainable development, J. Clean. Prod., 245 (2020b). 118-126.
DOI: 10.1016/j.jclepro.2019.118762
Google Scholar
[23]
O.O. Omotayo, C. Arum, Challenges and Prospects of Widespread Adoption of Pozzolans for Building Construction: A Statistical Assessment, International Journal of Engineering, 35 (2022) 1929-1940.
DOI: 10.5829/ije.2022.35.10a.12
Google Scholar
[24]
O.A. Oni, C. Arum, Workability and Compressive Strength of Concrete Containing Binary Cement, Mixed Fines, and Superplasticizer, Facta Universitatis Series: Architecture and Civil Engineering, 21 (2023) 299-314.
DOI: 10.2298/fuace220818017o
Google Scholar
[25]
M. Otieno, M. Alexander, Chloride conductivity testing of concrete - Past and recent developments, Journal of the South African Institution of Civil Engineering, 57 (2015) 55-64.
DOI: 10.17159/2309-8775/2015/v57n4a7
Google Scholar
[26]
M. Koushkbaghi, P. Alipour, B. Tahmouresi, Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes, Construction and Building Materials, 205 (2019) 519-528.
DOI: 10.1016/j.conbuildmat.2019.01.174
Google Scholar
[27]
A. Gholampour, V.D Ho, T. Ozbakkaloglu, Ambient cured geopolymer mortars prepared with waste-based sands: mechanical and durability-related properties and microstructure. Composites Part B: Engineering 160 (2019a) 519-534.
DOI: 10.1016/j.compositesb.2018.12.057
Google Scholar
[28]
M.D. Obebe, C.M Ikumapayi, K.K. Alaneme, Structural performance evaluation of concrete mixes containing recycled concrete aggregate and calcined termite mound for low-cost housing, Alexandria Engineering Journal, 72 (2023) 237–346.
DOI: 10.1016/j.aej.2023.03.095
Google Scholar
[29]
O.O. Ogunsote, J.O. Afolayan, C. Arum, B. Prucnal-Ogunsote, Repurposing Architectural and Structural Engineering Education To Combat Catastrophic Structural Failure In Developing Countries: A Nigerian Case Study! Uia2014 Durban Architecture, 1 (2014) 767-785.
Google Scholar
[30]
R.P. Venkatesan, K. Pazhani, K. (2016). Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash. KSCE J. Civ. Eng., 20(2) 2384–2391.
DOI: 10.1007/s12205-015-0564-0
Google Scholar
[31]
Leiva, Y. Luna-Galiano, C. Arenas, A porous geopolymer based on aluminum-waste with acoustic properties, Waste Management, 95 (2019) 504-512.
DOI: 10.1016/j.wasman.2019.06.042
Google Scholar
[32]
Silva, G.S. Kim, R. Aguilar, Natural fibers as reinforcement additives for geopolymer sea review of potential eco-friendly applications to the construction industry, Sustainable Materials and Technologies, 23 (2020) 1-8.
DOI: 10.1016/j.susmat.2019.e00132
Google Scholar
[33]
Bellum, R.R. Nerella, Madduru, S.R.C. Indukuri, Mix design and mechanical properties of fly ash and GGBFS-synthesized alkali-activated concrete (AAC), Infrastructures, 4 (2019) 20-29.
DOI: 10.3390/infrastructures4020020
Google Scholar
[34]
A. Özcan, M.B. Karakoç, The resistance of blast furnace slag-and ferrochrome slag-based geopolymer concrete against acid attack. Int. J. Civ. Eng., 17 (2019) 1571–1583.
DOI: 10.1007/s40999-019-00425-2
Google Scholar
[35]
R.P Palcis, The Effect of Water Quality on Concrete Strength and Permeability: A Review of the Use of Chlorinated Water vs. Top Water in Concrete, Mix Design, 1 (2023) 2-10.
Google Scholar
[36]
M. Koushkbaghi, P. Alipour, B. Tahmouresi, Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes, Construction and Building Materials, 205 (2019) 519-528.
DOI: 10.1016/j.conbuildmat.2019.01.174
Google Scholar
[37]
F. Matalkah, P. Soroushian, Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder, Construction and Building Materials, 249 (2020) 11-24.
DOI: 10.1016/j.conbuildmat.2020.118773
Google Scholar
[38]
R.Y. Nkwaju, J.N.Y Nobo, J.N.N. Fekoua, Iron-rich laterite-bagasse fibers based geopolymer composite: mechanical, durability and insulating properties, Applied Clay Science, 183 (2019) 10-17.
DOI: 10.1016/j.clay.2019.105333
Google Scholar
[39]
M. Sarkar, M. Maiti, S. Maiti, ZnO-SiO2 nanohybrid decorated sustainable geopolymer retaining antibiodeterioration activity with improved durability, Materials Science and Engineering: 92(2) 663-672.
DOI: 10.1016/j.msec.2018.07.005
Google Scholar
[40]
A.S. Kurtoglu, R. Alzeebaree, O. Aljumaili, A. Nis, M.E. Gulsan, G. Humur, G. A. Cevik, Mechanical and durability properties of fly ash and slag based geopolymer concrete, Adv. Concr. Constr. 6 (2018) 345-356.
Google Scholar
[41]
ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken (2019).
DOI: 10.1520/c0618-22
Google Scholar
[42]
ASTM C496/C496M-17, Standard Test. Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; American Society for Testing and Materials: West Conshohocken, PA, USA (2017).
Google Scholar
[43]
P. Cong, Y. Cheng, A comprehensive review, Journal of Traffic and Transportation Engineering, Advances in geopolymer materials, 1 (2021) 1-12.
Google Scholar