Microstructural and Mechanical Properties of Flash SPS WC-Co/AISI 304L Diffusion Bonded

Article Preview

Abstract:

In this study, the bonding of WC-Co cermet to AISI 304L stainless steel was achieved through the flash spark plasma sintering (FSPS) process under a steady pressure of 5 MPa and ultra-short holding durations. The investigation focused on the impact of holding time on interfacial characteristics, diffusion behavior, and mechanical performance. The results demonstrated that prolonged holding times, particularly up to 12 seconds, led to pronounced interfacial deformation and significant diffusion of Co, Ni, and Fe elements across the joint interface. Toughness assessment of the WC-Co cermet near the bonded region was carried out using the Vickers indentation fracture (VIF) technique. The analysis revealed a decline in mechanical integrity with extended holding times, increasing the brittleness of the joint despite the enhanced elemental diffusion between the cermet and the stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1163)

Pages:

53-58

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Avettand-Fènoël, T. Nagaoka, H. Fujii, R. Taillard, , Journal of Manufacturing Processes. 31 (2018)

Google Scholar

[2] B. Cheniti, D. Miroud, R. Badji, P. Hvizdoš, M. Fides, T. Csanádi, B. Belkessa, M. Tata, Materials Science and Engineering A. 758 (2019) 36–46.

DOI: 10.1016/j.msea.2019.04.081

Google Scholar

[3] A. Amirnasiri, N. Parvin, M.S. haghshenas, Journal of Manufacturing Processes. 28 (2017) 82-93.

Google Scholar

[4] H. Wang, D. Yang, X. Zhao, C. Chen, Q. Wang, Science and Technology of Welding and Joining. 10 (2005)

Google Scholar

[5] H. Chen, K. Feng, S. Wei, J. Xiong, Z. Guo, H. Wang, , Int. Journal of Refractory Metals and Hard Materials. 33 (2012) 70–74.

Google Scholar

[6] Y. Guo, B. Gao, G. Liu, T. Zhou, G. Qiao, , International Journal of Refractory Metals and Hard Materials. 51 (2015) 250–257.

Google Scholar

[7] C. Barbatti, J. Garcia, G. Liedl, A. Pyzalla, Materialwissenschaft Und Werkstofftechnik. 38 (2007) 907–914.

DOI: 10.1002/mawe.200700196

Google Scholar

[8] B. Cheniti, D. Miroud, R. Badji, D. Allou, T. Csanádi, M. Fides, P. Hvizdoš, International Journal of Refractory Metals and Hard Materials. 64 (2016) 210–218.

DOI: 10.1016/j.ijrmhm.2016.11.004

Google Scholar

[9] P.Q. Xu, Materials and Design. 32 (2011) 229–237.

DOI: 10.1016/j.matdes.2010.06.006

Google Scholar

[10] P.X. and X.Z. Binghui Ma, Xiaonan Wang , Chunhuan Chen, Dongran Zhou, Metals. 38 (2019) 124– 127.

Google Scholar

[11] H. Chen, K. Feng, S. Wei, J. Xiong, Z. Guo, H. Wang, International Journal of Refractory Metals and Hard Materials. 33 (2012) 70–74.

Google Scholar

[12] A.M. Venter, V. Luzin, D. Marais, N. Sacks, E.N. Ogunmuyiwa, P.H. Shipway, International Journal of Refractory Metals and Hard Materials. 87 (2020) 105101.

DOI: 10.1016/j.ijrmhm.2019.105101

Google Scholar

[13] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Journal of Materials Science. 20 (1985) 1873–1882.

DOI: 10.1007/BF00555296

Google Scholar

[14] B. Cheniti, B. Belkessa, B. Maamache, N. Ouali, R. Sedlak, P. Hvizdoš, Z. Boutaghou International Journal of Refractory Metals and Hard Materials. 101 (2021)

DOI: 10.1016/j.ijrmhm.2021.105653

Google Scholar